
Fortran Language Reference Manual,
Volume 1

Document Number 007–3692–004

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1993, 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

The CF90 compiler includes United States software patents 5,247,696, 5,257,372, and 5,361,354.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

IRIS, IRIX, and Silicon Graphics are registered trademarks and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

IBM is a trademark of International Business Machines Corporation. SPARC is a trademark of SPARC International, Inc.
TotalView is a trademark of Bolt Baranek and Newman, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively to X/Open Limited. The X device is a trademark of The Open Group.

Adapted with permission of McGraw-Hill, Inc. from the FORTRAN 90 HANDBOOK, Copyright © 1992 by Walter S. Brainerd,
Jeanne C. Adams, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved. Silicon Graphics, Inc. is solely
responsible for the content of this work.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Fortran Language Reference Manual, Volume 1 007–3692–004

This manual describes the Fortran 95 language as implemented by the CF90 compiler, release 3.2, and the
MIPSpro 7 Fortran 90 compiler, revision 7.3. These compilers supported parts of the Fortran 95 standard in
previous releases. The major changes to this manual reflect that the CF90 and the MIPSpro 7 Fortran 90
compilers now support the entire Fortran 95 standard.

This revision contains the following new features to support the Fortran 95 standard:

• The FORALL statement and construct.

• Pointer initialization.

• Default initialization in a derived type.

• A distinction between positive zero and negative real zero (-0.0) by the SIGN(3I) intrinsic function and
input/output.

• The ELSEWHERE statement can accept a conditional expression as an argument.

• MODULE PROCEDURE statements can be intermixed with interface bodies. The END INTERFACE
statement can repeat the generic identifier.

• User functions can be called from specification expressions.

• The NULL and CPU_TIME intrinsic procedures.

• The CEILING and FLOOR intrinsic procedures now accept [KIND=]kind arguments.

This revision also contains the following feature as an extension to the Fortran 95 standard:

• The FORM=SYSTEM specifier on the OPEN statement

The Fortran 95 standard has declared some Fortran 90 features to be obsolescent or has deleted them. The
CF90 and MIPSpro 7 Fortran 90 compilers, however, have not removed their functionality from the system.
Obsolescent features are described in the Fortran Language Reference Manual, Volume 1 and in the Fortran
Language Reference Manual, Volume 2; both manuals note when a particular feature is catagorized as
obsolescent. All features deleted from the current Fortran standard are described in the Fortran Language
Reference Manual, Volume 3. When the compilers detect a deleted feature, they process the feature and issue
a NON-ANSI message. The deleted features that generate NON-ANSI messages are as follows:

• Real and double precision DO variables

• Branching to an END IF from outside its IF construct

• PAUSE statement

• ASSIGN, assigned GO TO statements, and assigned format specifiers

• H edit descriptor

This revision describes the following feature, which is implemented on IRIX platforms only:

• The VOLATILE statement and attribute

Record of Revision

Version Description

1.0 December 1993
Original Printing.

1.1 June 1994
Online-only revision. Includes minor updates and corrections to revision 1.0.

2.0 October 1995
This printing supports the CF90 compiler release 2.0 running on Cray PVP systems,
CRAY T3E systems, and SPARC systems. The implementation of features on
CRAY T3E systems is deferred. Sections 11 through 14 of revision 1.0 are now part
of the CF90 Fortran Language Reference Manual, Volume 1, SR–3903. Appendix
sections A through G of revision 1.0 are now part of the CF90 Fortran Language
Reference Manual, Volume 3, publication SR–3905.

3.0 May 1997
This printing supports the Cray Research CF90 3.0 release, running on UNICOS and
UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 compiler 7.2 release,
running on the IRIX operating system. The implementation of features on IRIX
operating system platforms is deferred. Sections 9 and 10 of revision 2.0 are now
part of the Fortran Language Reference Manual, Volume 2.

3.0.1 August 1997
This online revision supports the Cray Research CF90 3.0.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2 release, running on the IRIX operating system. Includes minor
corrections and updates to revision 3.0.

3.0.2 March 1998
This online revision supports the Cray Research CF90 3.0.2 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
corrections and updates to revision 3.0.1.

3.1 August 1998

This online revision supports the Cray Research CF90 3.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.2.

007–3692–004 i

Fortran Language Reference Manual, Volume 1

3.2 January 1999
This revision (007–3692–004) supports the CF90 3.2 release, running on the UNICOS
and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 7.3 release,
running on the IRIX operating system. It includes major updates to revision 3.1.

ii 007–3692–004

Contents

Page

About This Manual xv

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications xv

CF90 and MIPSpro 7 Fortran 90 Compiler Messages xvi

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages xvi

Related Fortran Publications . xvii

Related Publications . xvii

Obtaining Publications . xviii

Conventions . xix

BNF Conventions . xxi

Reader Comments . xxii

Introduction [1] 1

FORTRAN 77 Compatibility . 1

Fortran 90 Compatibility . 2

Fortran 95 language standard . 3

Program Conformance . 4

Processor Conformance . 4

Portability . 5

Fortran Concepts and Terms [2] 7

Scope and Association . 7

Scoping Units . 13

Association . 13

Program Organization . 13

Program Units . 13

007–3692–004 iii

Fortran Language Reference Manual, Volume 1

Page

Packaging . 15

Data Environment . 16

Data Type . 16

Kind . 17

Dimensionality . 17

Dynamic Data . 18

Program Execution . 19

Execution Sequence . 20

Definition and Undefinition . 20

Dynamic Behavior . 21

Summary of Forms . 23

Program Units . 23

Main Program . 27

External Subprogram . 27

Module . 27

Block Data . 28

Internal Subprogram . 28

Procedure Headings . 28

Procedure Endings . 28

Specification Constructs . 29

Derived-type Definition . 29

Interface Block . 29

Specification Statements . 30

Type Declaration Statements . 32

Attribute Specifications . 33

Execution Part . 33

Action Statements . 34

CASE Construct . 36

DO Construct . 37

iv 007–3692–004

Contents

Page

IF Construct . 37

FORALL Construct . 37

WHERE Construct . 38

Ordering Requirements . 38

Example Fortran Program . 40

Language Elements and Source Form [3] 43

CF90 and MIPSpro 7 Fortran 90 Character Set 43

Lexical Tokens . 46

Statement Keywords . 47

Names . 47

Constants . 48

Operators . 50

Statement Labels . 53

Source Form . 53

Free Source Form . 55

The Ampersand (&) As a Continuation Symbol 57

Blanks As Separators . 58

Sample Program, Free Source Form 60

Fixed Source Form . 60

Tab Character . 62

Sample Program, Fixed Source Form 62

Portable Source Form . 63

Sample Program, Use with Either Source Form 64

The INCLUDE Line . 64

Low-level Syntax . 65

Data Types [4] 67

Building the Data Environment for a Problem Solution 69

Choosing the Type and Other Attributes of a Variable 69

007–3692–004 v

Fortran Language Reference Manual, Volume 1

Page

Choosing the Kind of a Variable of Intrinsic Type 70

Choosing to Define a Type for a Variable 71

What Is Meant by type in Fortran 72

Data Type Names . 72

Data Type Values . 72

Data Type Operations . 73

Forms for Constants and Constructors 73

Intrinsic Data Types . 74

Integer Type . 75

Values . 75

Operators . 77

Format for Constant Values 77

Real Type . 80

Values . 80

Operators . 82

Forms for Constants . 82

Complex Type . 84

Values . 84

Operators . 85

Form for Constants . 85

Logical Type . 86

Values . 86

Operators . 87

Form for Constants . 88

Character Type . 88

Values . 89

Operators . 89

Form for Constants . 89

Boolean Type (EXTENSION) . 90

vi 007–3692–004

Contents

Page

Octal Form . 91

Hexadecimal Form . 92

Hollerith Form . 93

Cray Pointer Type (EXTENSION) 93

Cray Character Pointer Type (EXTENSION) (UNICOS and UNICOS/mk Systems Only) . . 97

Derived Types . 97

Derived Type Definition . 99

Derived Type Values . 108

Derived Type Operations . 108

Syntax for Specifying Derived-type Constant Expressions 109

Structure Constructors . 109

Array Constructors . 112

Declarations [5] 117

Type Declaration Statements . 119

Integer . 121

Real . 122

Double Precision . 123

Complex . 124

Logical . 125

Character . 126

Derived Type . 129

Cray Pointer (EXTENSION) . 130

Cray Character Pointer (EXTENSION) (Implementation Deferred on IRIX Systems) . . . 131

Implicit Typing . 132

Array Properties . 134

Array Specifications . 134

Explicit-shape Arrays . 135

Assumed-shape Arrays . 136

007–3692–004 vii

Fortran Language Reference Manual, Volume 1

Page

Deferred-shape Arrays . 137

Assumed-size Arrays . 138

DIMENSION Attribute and Statement 139

ALLOCATABLE Attribute and Statement 141

POINTER Properties . 142

POINTER Attribute and Statement 143

TARGET Attribute and Statement 144

AUTOMATIC Attribute and Statement (EXTENSION) 145

Data Initialization and the DATA Statement 146

PARAMETER Attribute and Statement 154

Object Accessibility and Use . 155

PUBLIC and PRIVATE Attributes and Statements 155

INTENT Attribute and Statement 159

OPTIONAL Attribute and Statement 161

SAVE Attribute and Statement 163

VOLATILE Attribute and Statement (IRIX Systems Only) 165

Procedure Properties . 168

EXTERNAL Attribute and Statement 168

INTRINSIC Attribute and Statement 170

Automatic Data Objects . 171

NAMELIST Statement . 173

Storage Association . 174

Storage Units . 174

Storage Sequence . 176

EQUIVALENCE Statement . 177

COMMON Statement . 179

Restrictions on Common and Equivalence 184

Using Data [6] 187

Constants and Variables . 188

viii 007–3692–004

Contents

Page

Substrings . 190

Structure Components . 192

Arrays . 195

Array Terminology . 195

Whole Arrays . 196

Array Elements . 196

Array Sections . 197

Format of Array Elements and Array Sections 197

Subscripts . 200

Subscript Triplets . 200

Vector Subscripts . 201

Using Array Elements and Array Sections 202

Array Element Order . 203

Pointers and Allocatable Arrays . 204

ALLOCATE Statement . 206

Allocation of Allocatable Arrays 208

Allocation of Pointers . 208

NULLIFY Statement . 209

DEALLOCATE Statement . 209

Deallocation of Allocatable Arrays 211

Deallocation of Pointers . 212

Expressions and Assignments [7] 215

Introduction to Expressions . 215

Assignment . 217

Expressions . 218

Formation of Expressions . 220

Operands . 220

Binary and Unary Operations . 221

007–3692–004 ix

Fortran Language Reference Manual, Volume 1

Page

Intrinsic and Defined Operations 223

Rules for Forming Expressions 224

Primary . 226

Defined Unary Expression . 228

Exponentiation Expression . 229

Multiplication Expression . 229

Summation Expression . 230

Concatenation Expression . 231

Comparison Expression . 232

Not Expression . 233

Conjunct Expression . 234

Inclusive Disjunct Expression 235

Equivalence Expressions and Exclusive Disjunct Expressions 236

Expression . 237

Summary of the Forms and Hierarchy for Expressions 238

Precedence of Operators . 240

Intrinsic Operations . 242

Defined Operations . 244

Data Type, Type Parameters, and Shape of an Expression 245

Data Type and Type Parameters of a Primary 246

Type and Type Parameters of the Result of an Operation 248

Shape of an Expression . 252

The Extents of an Expression 252

Special Expressions . 255

Constant Expressions . 256

Initialization Expressions . 258

Specification Expressions . 260

x 007–3692–004

Contents

Page

Initialization and Specification Expressions in Declarations 262

Uses of the Various Kinds of Expressions 263

Interpretation of Expressions . 267

Interpretation of the Intrinsic Operations 268

Interpretation of Numeric Intrinsic Operations 269

Interpretation of Standard Nonnumeric Intrinsic Operations 270

Interpretation of Intrinsic Operations with Array Operands 271

Interpretation of Intrinsic Operations with Pointer Operands 272

Interpretation of Defined Operations 272

Evaluation of Expressions . 274

Possible Alternative Evaluations 275

Partial Evaluations . 277

Assignment . 279

Intrinsic Assignment . 280

Defined Assignment . 283

Pointer Assignment . 285

Masked Array Assignment . 288

WHERE Statement and Construct 289

Differences between the WHERE Construct and Control Constructs 293

FORALL Statement and Construct 293

FORALL Construct . 293

FORALL Statement . 297

Restrictions on FORALL Constructs and Statements 298

Controlling Execution [8] 299

The Execution Sequence . 299

Blocks and Executable Constructs 300

IF Construct and IF Statement . 301

The IF Construct . 302

007–3692–004 xi

Fortran Language Reference Manual, Volume 1

Page

Form of the IF Construct . 302

Execution of the IF Construct 303

IF Statement . 304

Form of the IF Statement . 304

Execution of the IF Statement 304

CASE Construct . 305

Form of the CASE Construct . 305

Execution of the CASE Construct 307

DO Construct . 310

Form of the Block DO Construct 312

Form of the Nonblock DO Construct 314

Range of a DO Construct . 316

Active and Inactive DO Constructs 316

Execution of DO Constructs . 317

DO Construct with an Iteration Count 317

DO WHILE Construct . 319

Simple DO Construct . 320

Altering the Execution Sequence Within the Range of a DO Construct 320

EXIT Statement . 321

Branching . 323

Use of Labels in Branching . 323

GO TO Statement . 324

Form of the GO TO Statement 324

Execution of the GO TO Statement 324

Computed GO TO Statement . 324

CONTINUE Statement . 325

STOP Statement . 326

Arithmetic IF Statement (Obsolescent) 326

Glossary 329

xii 007–3692–004

Contents

Page

Index 339

Figures
Figure 1. Program packaging example 15

Figure 2. Requirements on statement ordering 39

Figure 3. Restrictions on the appearance of statements 40

Figure 4. Fortran data types . 68

Figure 5. Forms of constants and constructors 74

Figure 6. Default implicit mapping for a program unit 132

Figure 7. Character alignment example 179

Figure 8. Numeric array alignment example 179

Figure 9. Storage of REUSE in FIRST and SECOND 183

Figure 10. Alignment resulting from correct code 184

Figure 11. Alignment resulting from incorrect code 185

Figure 12. Computation of subscript order value 204

Figure 13. States in the lifetime of a pointer 205

Figure 14. The hierarchy of expressions by examples 239

Figure 15. Example ordering of numeric types on UNICOS systems 250

Figure 16. Relationships between the kinds of expressions 263

Figure 17. Execution flow for an IF construct 303

Figure 18. Execution flow for a CASE construct 309

Figure 19. Execution flow for a DO construct 311

Tables
Table 1. CF90 and MIPSpro 7 Fortran 90 special characters 43

Table 2. Integer kind values . 76

Table 3. Exponent equivalents . 76

Table 4. Real and complex kind values 81

007–3692–004 xiii

Fortran Language Reference Manual, Volume 1

Page

Table 5. Exponent equivalents . 81

Table 6. Logical kind values . 87

Table 7. Types, attributes, and storage 175

Table 8. Message number identifiers 207

Table 9. Message number identifiers 211

Table 10. Intrinsic operators and the allowed types of their operands 221

Table 11. The hierarchy of expressions through forms 225

Table 12. Categories of operations and relative precedences 240

Table 13. Operand types and results for intrinsic operations 242

Table 14. Type and type parameters of some simple expressions 251

Table 15. Differences and similarities between initialization and specification expressions . . 264

Table 16. Kinds of expressions and their uses 265

Table 17. Interpretation of the intrinsic operations 268

Table 18. The values of operations involving logical operators 271

Table 19. Equivalent evaluations for numeric intrinsic operations 276

Table 20. Nonequivalent evaluations of numeric expressions 277

Table 21. Equivalent evaluations of other expressions 278

Table 22. Types of the variable and expression in an intrinsic assignment 280

Table 23. Conversion performed on an expression before assignment 282

xiv 007–3692–004

About This Manual

This manual describes the Fortran language as implemented by the CF90
compiler, revision 3.2, and by the MIPSpro 7 Fortran 90 compiler, revision 7.3.
The CF90 and MIPSpro 7 Fortran 90 compilers implement the Fortran standard.

The CF90 and MIPSpro 7 Fortran 90 compilers run on UNICOS, UNICOS/mk,
and IRIX operating systems. Specific hardware and operating system support
information is as follows:

• The CF90 compiler runs under UNICOS 10.0, or later, on CRAY SV1,
CRAY C90, CRAY J90, and CRAY T90 systems.

• The CF90 compiler runs under UNICOS/mk 2.0.3, or later, on CRAY T3E
systems.

• The MIPSpro 7 Fortran 90 compiler runs under IRIX 6.2, or later, on Cray
and Silicon Graphics systems.

The CF90 and MIPSpro 7 Fortran 90 compilers were developed to support the
Fortran standard adopted by the American National Standards Institute (ANSI)
and the International Standards Organization (ISO). This standard, commonly
referred to in this manual as the Fortran standard, is ISO/IEC 1539–1:1997.
Because the Fortran standard is, generally, a superset of previous standards, the
CF90 and MIPSpro 7 Fortran 90 compilers will compile code written to previous
standards.

Note: The Fortran 95 standard is a revision to the Fortran 90 standard. The
standards organizations continue to interpret the Fortran standard for Silicon
Graphics and for other vendors. To maintain conformance to the Fortran
standard, Silicon Graphics may need to change the behavior of certain CF90
and MIPSpro 7 Fortran 90 compiler features in future releases based upon the
outcomes of interpretations to the standard.

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications

This manual is one of a set of manuals that describes the CF90 and the MIPSpro
7 Fortran 90 compilers. The complete set of CF90 and MIPSpro 7 Fortran 90
compiler manuals is as follows:

• Intrinsic Procedures Reference Manual.

007–3692–004 xv

Fortran Language Reference Manual, Volume 1

• Fortran Language Reference Manual, Volume 1. Chapters 1 through 8
correspond to sections 1 through 8 of the Fortran standard.

• Fortran Language Reference Manual, Volume 2. Chapters 1 through 6 of this
manual correspond to sections 9 through 14 of the Fortran standard.

• Fortran Language Reference Manual, Volume 3. This manual contains CF90 and
MIPSpro 7 Fortran 90 compiler information that supplements the Fortran
standard. The standard is the complete, official description of the language.
This manual also contains the complete Fortran syntax in Backus-Naur form
(BNF).

The following publications contain information specific to the CF90 compiler:

• CF90 Ready Reference

• CF90 Commands and Directives Reference Manual

• CF90 Co-array Programming Manual

The following publication contains information specific to the MIPSpro 7
Fortran 90 compiler:

• MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

CF90 and MIPSpro 7 Fortran 90 Compiler Messages

You can obtain CF90 and MIPSpro 7 Fortran 90 compiler message explanations
by using the online explain(1) command.

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the CF90 and MIPSpro 7 Fortran 90 compilers. Man
pages exist for the library routines, the intrinsic procedures, and several
programming environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col(1), and lpr(1) commands. In the following example, these
commands are used to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage

xvi 007–3692–004

About This Manual

(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep. To access egrep online, you can type man
grep or man egrep. Both commands display the grep man page to your
terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
can consult for more information on the history of Fortran and the Fortran
language itself:

• Adams, J. C., W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.
Fortran 95 Handbook : Complete ISO/ANSI Reference. MIT Press, 1997. ISBN
0262510960.

• Chapman, S. Fortran 90/95 for Scientists and Engineers. McGraw Hill Text,
1998. ISBN 0070119384.

• Chapman, S. Introduction to Fortran 90/95. McGraw Hill Text, 1998. ISBN
0070119694.

• Counihan, M. Fortran 95 : Including Fortran 90, Details of High Performance
Fortran (HPF), and the Fortran Module for Variable-Length Character Strings.
UCL Press, 1997. ISBN 1857283678.

• Gehrke, W. Fortran 95 Language Guide. Springer Verlag, 1996. ISBN
3540760628.

• International Standards Organization. ISO/IEC 1539–1:1997, Information
technology — Programming languages — Fortran. 1997.

• Metcalf, M. and J. Reid. Fortran 90/95 Explained. Oxford University Press,
1996. ISBN 0198518889.

Related Publications

Certain other publications from Silicon Graphics may also interest you.

On UNICOS and UNICOS/mk systems, the following documents contain
information that may be useful when using the CF90 compiler:

007–3692–004 xvii

Fortran Language Reference Manual, Volume 1

• Segment Loader (SEGLDR) and ld Reference Manual

• UNICOS User Commands Reference Manual

• UNICOS Performance Utilities Reference Manual

• Scientific Libraries Reference Manual

• Introducing the Program Browser

• Application Programmer’s Library Reference Manual

• Guide to Parallel Vector Applications

• Introducing the Cray TotalView Debugger

• Introducing the MPP Apprentice Tool

• Application Programmer’s I/O Guide

• Optimizing Code on Cray PVP Systems

• Compiler Information File (CIF) Reference Manual

On IRIX systems, the following documents contain information that may be
useful when using the MIPSpro 7 Fortran 90 compiler:

• MIPSpro Compiling and Performance Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro 64-Bit Porting and Transition Guide

• MIPSpro Assembly Language Programmer’s Guide

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
hardware and software documents that are available to customers. Customers
who subscribe to the Cray Inform (CRInform) program can access this
information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

xviii 007–3692–004

About This Manual

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

DEL or DELETED The DEL or DELETED notation indicates that the
feature being described has been deleted from the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers support these features, but
the compilers issue a message when a deleted
feature is encountered.

EXT or EXTENSION The EXT or EXTENSION notation indicates that
the feature being described is an extension to the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers issue a message when
extensions are encountered.

OBS or OBSOLESCENT The OBS or OBSOLESCENT notation indicates
that the feature being described is considered to
be obsolete in the Fortran standard. The CF90
and MIPSpro 7 Fortran 90 compilers support
these features, but the compilers issue a message
when an obsolescent feature is encountered.

007–3692–004 xix

Fortran Language Reference Manual, Volume 1

xyz_list When _list is part of a syntax description, it
means that several items may be specified. For
example, xyz_list can be expanded to mean
xyz [, xyz]

scalar_ When scalar_ is the first item in a syntax
description, it indicates that the item is a scalar,
not an array, value.

_name When _name is part of a syntax definition, it
indicates that the item is a name with no
qualification. For example, the item must not
have a subscript list, so ARRAY is a name, but
ARRAY(I) is not.

(Rnnnn) Indicates that the Fortran 90 standard has rules
regarding the characteristic of the language being
discussed. All rules are numbered, and the
numbered list appears in the Fortran Language
Reference Manual, Volume 3. The numbering of the
rules in the Fortran Language Reference Manual,
Volume 3 matches the numbering of the rules in
the standard. The forms of the rules in the Fortran
Language Reference Manual, Volume 3 and the BNF
syntax class terms that are used may differ from
the rules and terms used in the standard.

POINTER The term POINTER refers to the Fortran POINTER
attribute.

Cray pointer The term Cray pointer refers to the Cray pointer
data type extension.

Fortran
Fortran standard

These terms refer to the current Fortran standard,
which is the Fortran 95 standard. For situations
when it might otherwise be confusing, a specific

xx 007–3692–004

About This Manual

standard is mentioned along with its numeric
identifier (FORTRAN 77, Fortran 90, Fortran 95).

BNF Conventions

This section describes some of the commonly used Backus-Naur Form (BNF)
conventions.

Terms such as goto_stmt are called variable entries, nonterminal symbols, or simply,
nonterminals. The metalanguage term goto_stmt, for example, represents the
GO TO statement, as follows:

goto_stmt is GOTO label

The syntax rule defines goto_stmt to be GO TO label, which describes the format
of the GO TO statement. The description of the GO TO statement is incomplete
until the definition of label is given. label is also a nonterminal symbol. A
further search for label will result in a specification of label and thereby provide
the complete statement definition. A terminal part of a syntax rule is one that
does not need further definition. For example, GO TO is a terminal keyword
and is a required part of the statement form. The complete BNF list appears in
the Fortran Language Reference Manual, Volume 3.

The following abbreviations are commonly used in naming nonterminal
keywords:

Abbreviation Term

arg argument

attr attribute

char character

decl declaration

def definition

desc descriptor

expr expression

int integer

op operator

007–3692–004 xxi

Fortran Language Reference Manual, Volume 1

spec specifier or specification

stmt statement

The term is separates the syntax class name from its definition. The term or
indicates an alternative definition for the syntactic class being defined. The
following example shows that add_op, the add operator, may be either a plus
sign (+) or a minus sign (-):

add_op is +

or -

Indentation indicates syntax continuation. If a rule does not fit on one line, the
second line is indented. This is shown in the following example:

dimension_stmt is DIMENSION [::] array_name (array_spec)
[, array_name (array_spec)] ...

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

xxii 007–3692–004

About This Manual

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043–1389

We value your comments and will respond to them promptly.

007–3692–004 xxiii

Introduction [1]

For a programming language, Fortran has existed for a long time. It was one of
the first widely used high-level languages and was the first programming
language to be standardized. It is still the premier language for scientific and
engineering computing applications. This chapter provides compatibility
information and introduces the newest additions to the Fortran language.

1.1 FORTRAN 77 Compatibility

Because of the large investment in existing software written in Fortran, the
Fortran standards committee decided to include the entire previous
FORTRAN 77 standard in the Fortran 90 standard. In the Fortran 95 standard,
however, some features are deleted. Even though the Fortran 95 standard
deleted some features, the CF90 and MIPSpro 7 Fortran 90 compilers have not
deleted any features. Features from older standards that are deleted are
honored, but they generate an ANSI message from the compiler.

Fortran 95 restricts the behavior of some features that were processor
dependent in FORTRAN 77. Therefore, a program that conforms to the
FORTRAN 77 standard and uses processor-dependent features can also conform
to the Fortran 95 standard and yet behave differently than with some
FORTRAN 77 systems. In the following situations, the Fortran 95 interpretation
is different from that of FORTRAN 77:

• Fortran 95 contains more intrinsic functions than FORTRAN 77 did, and
Fortran 95 has a few intrinsic subroutines. Therefore, a standard-conforming
FORTRAN 77 program can have a different interpretation under this
standard if it invokes an external procedure that has the same name as one
of the new standard intrinsic procedures, unless that procedure is specified
in an EXTERNAL statement as recommended for nonintrinsic functions.

• If a named variable that was not in a common block was initialized in a
DATA statement, it has the SAVE attribute in Fortran 95. In FORTRAN 77, if
the value of the variable was changed or became undefined, its value on
reentry into a procedure was processor dependent. The CF90 and MIPSpro 7
Fortran 90 compilers treat variables initialized in DATA statements as if they
had appeared in a SAVE statement.

• In FORTRAN 77, an input list could never require more characters than
were present in a record during formatted input. Fortran 95 does not dictate
this restriction for cases in which the PAD= specifier is YES; in these cases,

007–3692–004 1

Fortran Language Reference Manual, Volume 1

the input record is padded with as many blanks as necessary to satisfy the
input item and the corresponding format. For more information on this, see
the Fortran Language Reference Manual, Volume 3.

• FORTRAN 77 permitted a processor to supply extra precision for a real
constant when it was used to initialize a DOUBLE PRECISION data object in
a DATA statement. Fortran 95 does not permit this.

• The format of a floating point zero written with a G edit descriptor is
different in Fortran 95. The floating-point zero was written with an Ew.d
edit descriptor in FORTRAN 77, but it is written with an Fw.d edit
descriptor in the CF90 and MIPSpro 7 Fortran 90 compilers. FORTRAN 77
output cannot be changed. Therefore, different compare files must be
retained for FORTRAN 77 and Fortran 95 programs that use the G edit
descriptor for floating-point output.

1.2 Fortran 90 Compatibility

The Fortran 90 language standard introduced new data types, new operators,
and new meanings for the existing operators and assignment. It provided ways
for programmers to extend Fortran. These facilities allow programmers to
create abstract data types by defining new types and the operations to be
performed on them. Modules were introduced into Fortran as a convenient way
to package these new data types and their operations. Modules can be used by
the same programmer in different applications or can be distributed to several
users on the same or different projects.

The Fortran 90 standard (ISO/IEC 1539:1991) described the syntax and
semantics of the Fortran programming language. The standard addressed
certain aspects of the Fortran processing system, but it did not address others.
When specifications were not covered by the standard, the interpretation was
processor dependent; that is, the processor defined the interpretation, but the
interpretation for any two processors did not need to be the same. Typically,
programs that rely on processor-dependent interpretations are not portable.

The Fortran 90 standard declared several features to be obsolescent. In the
Fortran 95 standard, some of Fortran 90’s obsolescent features are deleted. The
CF90 and MIPSpro 7 Fortran 90 compilers have not deleted any features. The
compiler issues an ANSI message whenever a deleted feature is used, however.
For more information on deleted and obsolescent features, see the Fortran
Language Reference Manual, Volume 3.

2 007–3692–004

Introduction [1]

1.2.1 Fortran 95 language standard

Fortran 95 continues the evolutionary model introduced in Fortran 90 by
deleting several of the features marked as obsolescent in Fortran 90 and
identifying a few new obsolescent features. For information on these features,
see the Fortran Language Reference Manual, Volume 3.

Fortran 95 is a relatively minor evolution of standard Fortran, with the
emphasis in this revision being upon correcting defects in the Fortran 90
standard. This new standard also provides interpretation for a number of
questions that have arisen concerning Fortran 90 semantics and syntax. For
example, the Fortran 95 SIGN(3I) intrinsic function behaves differently from the
Fortran 90 SIGN(3I) function if the second argument is negative real zero.

In addition to corrections and clarifications, Fortran 95 contains several
extensions to Fortran 90. The major extensions are as follows:

• The FORALL statement and construct.

• PURE and ELEMENTAL procedures.

• Pointer initialization and structure default initialization.

• Additional intrinsic procedures. A Fortran 90 program may have a different
interpretation under the Fortran 95 standard if it invokes an external
procedure that has the same name as one of the new standard intrinsic
procedures unless that procedure is specified in an EXTERNAL statement or
an interface body.

The Fortran 95 standard specifies the following information:

• Syntax of Fortran statements and forms for Fortran programs

• Semantics of Fortran statements and Fortran programs

• Specifications for correct input data

• Appearance of standard output data

The standard does not specify the following information:

• The way in which each Fortran compiler is written

• Operating system facilities defining the computing system

• Methods used to transfer data to and from peripheral storage devices and
the nature of the peripheral devices

007–3692–004 3

Fortran Language Reference Manual, Volume 1

• Behavior of vendor extensions

• Size and complexity of a Fortran program and its data

• Hardware or firmware used to run the program

• The way values are represented and the way numeric values are computed

• Physical representation of data

• Characteristics of tapes, disks, and various storage media

1.2.2 Program Conformance

A program conforms to the standard if all the statements are syntactically
correct, execution of the program causes no violations of the standard (such as
dividing by zero), and all the input data is in the correct form.

CF90 and MIPSpro 7 Fortran 90 extensions to the Fortran standard appear in
notes throughout the text.

1.2.3 Processor Conformance

In the Fortran standard, the term processor means the combination of a Fortran
compiler and the computing system that executes the code. A processor
conforms to the standard if it compiles and executes programs that conform to
the standard, provided that the Fortran program is not too large or complex for
the computer system in question.

Options on the f90(1) command line can direct the compiler to flag
nonstandard usage. For more information on the command lines, see f90(1),
the CF90 Commands and Directives Reference Manual, and the MIPSpro 7 Fortran
90 Commands and Directives Reference Manual. When the option is in effect, the
compiler prints messages for extensions to the standard that are used in the
program. As required by the standard, the compiler also flags the following
items and provides the reason that the item is being flagged:

• Obsolescent features

• Deleted features

• Kind type parameters not supported

• Violations of any syntax rules and the accompanying constraints

• Characters not permitted by the processor

4 007–3692–004

Introduction [1]

• Illegal source form

• Violations of the scope rules for names, labels, operators, and assignment
symbols

These conformance requirements were not present in previous Fortran
standards.

The CF90 and MIPSpro 7 Fortran 90 compilers include extensions to the Fortran
standard. Because these compilers process programs according to the standard,
they are considered to be standard-conforming processors. When the option to
note deviations from the Fortran standard is in effect, extensions to the standard
are flagged with ANSI messages when detected at compile time.

1.2.4 Portability

One of the main purposes of a standard is to describe how to write portable
programs. However, some things are standard-conforming but not portable; for
example, a program that computes a very large number like 10250. Certain
computing systems will not accommodate a number this large. Such a number
could be part of a standard-conforming program, but it might not run on all
systems; therefore, it might not be portable. Another example is a program that
uses a deeper nesting of control constructs than is allowed by a particular
compiler.

007–3692–004 5

Fortran Concepts and Terms [2]

Terms are used in a precise way to describe a programming language, so this
chapter introduces the fundamental terms needed to understand Fortran. You
can consult the glossary in this manual for definitions of terms.

One of the major concepts involves the organization of a Fortran program. This
topic is introduced in this chapter by presenting the high-level syntax rules for
a Fortran program, which includes the principal constructs and statements that
form a program. This chapter also describes the order in which constructs and
statements must appear in a program and concludes with an example of a short
Fortran program.

2.1 Scope and Association

In examining the basic concepts in Fortran, it helps to trace some of the
important steps in its evolution. The results of the first few steps are familiar to
Fortran programmers, but the later ones become relevant only when the new
features of Fortran are used.

The first version of Fortran produced in the late 1950s did not have
user-defined subroutines or functions, but it did contain intrinsic functions.

Programmers soon realized the benefits of isolating definitive chunks of code
into separate units known as function and subroutine subprograms. This not
only provided a mechanism for structuring a program but permitted
subprograms to be written once and then be called many times by the same
program (or even be used by more than one program). Equally important,
subprograms could be compiled separately.

With this powerful tool came complications. For example, if both the main
program and a subprogram use the variable named X, what is the connection
between them? The answer is that, in general, there is no connection between X
in the main program and X in a subprogram. Subprograms are separately
compilable; an X in a different subprogram is not even known at compile time,
so the simplest thing to do is have no connection between variables with the
same name in different program units. Thus, if two different programmers work
on different program units, neither one needs to worry about names picked by
the other. This idea is described by saying that the two Xs have different scope.

A subroutine could be written to do a summation of the first hundred integers
and print the results. For example:

007–3692–004 7

Fortran Language Reference Manual, Volume 1

SUBROUTINE TOTAL

M = 0
DO I = 1, 100

M = M + I

END DO

WRITE(6, 9) M

9 FORMAT(I10)

RETURN
END

With this subroutine available, the main program could be written as follows:

CALL TOTAL
STOP

END

Suppose you decide that the subroutine would be more generally useful if it
computed the sum but did not print it, as follows:

SUBROUTINE TOTAL

M = 0

DO I = 1, 100

M = M + I

END DO

RETURN
END

A first attempt to use this subroutine might produce the following erroneous
program:

CALL TOTAL

WRITE(6, 9) M

9 FORMAT(I10)

STOP

END

This does not work because the variable M in the subroutine has nothing to do
with variable M in the main program. A connection between the two values
should exist, so when subroutines and functions were introduced, two schemes
were provided to communicate values between them and other program units:
procedure arguments and common blocks.

The following two complete programs communicate values in two ways. The
first, program ARGSUM, uses a subroutine argument, and the second, program
COMSUM, uses a common block to communicate values. The names in the

8 007–3692–004

Fortran Concepts and Terms [2]

different program units identify completely separate variables, yet their values
are communicated from one to the other by using either arguments or common
blocks, so the name of the variable holding the sum in the subroutine need not
be the same as the corresponding variable in the calling program.

PROGRAM ARGSUM

CALL TOTAL(M)

WRITE(6, 9) M
9 FORMAT(I10)

END

SUBROUTINE TOTAL(ITOTAL)

ITOTAL = 0
DO I = 1, 100

ITOTAL = ITOTAL + I

END DO

END

Program COMSUM, which follows, performs the same computation as program
ARGSUM:

PROGRAM COMSUM

COMMON /CB/ M

CALL TOTAL

WRITE(6, 9) M
9 FORMAT(I10)

END

SUBROUTINE TOTAL

COMMON /CB/ ITOTAL
ITOTAL = 0

DO I = 1, 100

ITOTAL = ITOTAL + I

END DO

END

To describe even these simple cases and appreciate how they work already
requires the introduction of some terms and concepts. To precisely describe the
phenomenon that the subroutine variable ITOTAL is not known outside the
subroutine, the concept of scope is used. Because the scope of a variable in a
common block is local, the scope of ITOTAL includes only the subroutine — not
the main program.

007–3692–004 9

Fortran Language Reference Manual, Volume 1

The scope of ITOTAL is the subroutine; the scope of the variable M is the main
program. However, the scope of the common block name CB is global.
association is used to describe the connection between M in the main program
and ITOTAL in the subroutine. In the first example it is argument association,
and in the second it is storage association.

To summarize, the scope of a variable is that part of the program in which it is
known and can be used. Two variables may have the same name and
nonoverlapping scopes; for example, there may be two completely different
variables named X in two different subprograms. Association of variables
means that there may be two different names for the same object; this permits
sharing values under certain conditions.

With arguments available, it is natural to generalize the computation somewhat
to allow the upper limit of the sum (100 in the example) to vary. Also, a
function is more natural in this case than a subroutine, because the object of the
computation is to return a single value. These changes produce the following
program:

PROGRAM PTOTAL

INTEGER TOTAL

PRINT *, TOTAL(100)

END

FUNCTION TOTAL(N)

INTEGER TOTAL

TOTAL = 0

DO I = 1, N
TOTAL = TOTAL + I

END DO

END

In this example, the scope of N is function TOTAL, but when function TOTAL is
called from the main program in the PRINT statement, the value of N, through
argument association, becomes 100. The scope of variable I is function TOTAL.
The scope of function TOTAL is the whole program, but its type must be
declared in the main program because by the implicit typing rules, TOTAL is
not of type integer. Also note that there is a function named TOTAL, with global
scope, and a variable named TOTAL is local to the function. The use of
identifier TOTAL determines whether it is the local variable TOTAL or the global
function name TOTAL. When TOTAL is used with an argument list, it is the
function name; when used inside the function subprogram defining the
function TOTAL, it is the local variable. Variable TOTAL computes and stores the
value that is returned as the value of the function TOTAL.

10 007–3692–004

Fortran Concepts and Terms [2]

It is possible to rewrite the example using internal procedures:

PROGRAM DO_TOTAL
PRINT *, TOTAL(100)

CONTAINS

FUNCTION TOTAL(N)

INTEGER TOTAL
TOTAL = 0

DO I = 1, N

TOTAL = TOTAL + I

END DO

END FUNCTION TOTAL

END PROGRAM DO_TOTAL

This is similar to the previous example, but the function is placed prior to the
END statement of the main program and the CONTAINS statement is inserted to
mark the beginning of any internal functions or subroutines. In this case, the
function TOTAL is not global but is local to the program DO_TOTAL. Also, the
FUNCTION statement for TOTAL and the specifications that follow it specify
TOTAL as a function of type integer with one integer argument N. The type of
TOTAL must not be declared in the specification part of the program DO_TOTAL;
to do so would create a duplicate declaration of TOTAL. The information about
the type of the function and type of the argument is called the interface to the
internal function.

To illustrate some other rules about scoping and association related to internal
procedures, the example can be changed back to one that uses a subroutine, but
one that is now internal.

PROGRAM DO_TOTAL
INTEGER TOTAL

CALL ADD_EM_UP(100)

PRINT *, TOTAL

CONTAINS

SUBROUTINE ADD_EM_UP(N)

TOTAL = 0

DO I = 1, N

TOTAL = TOTAL + I

END DO

END SUBROUTINE ADD_EM_UP

007–3692–004 11

Fortran Language Reference Manual, Volume 1

END PROGRAM DO_TOTAL

The preceding example shows that TOTAL in the internal subroutine and TOTAL
in the main program are, indeed, the same variable. It does not need to be
declared type integer in the subroutine. This is the result of host association,
wherein internal procedures inherit information about variables from their host,
which is the main program in this case. Variable I does not appear in the main
program, so its scope is the internal subroutine.

Data declarations and procedures can be placed in a module. Then they can be
used by other parts of the program. This scheme is illustrated using the
summation function example again, as follows:

MODULE TOTAL_STUFF

CONTAINS
FUNCTION TOTAL(N)

INTEGER TOTAL, N, I

TOTAL = 0

DO I = 1, N

TOTAL = TOTAL + I

END DO
END FUNCTION TOTAL

END MODULE TOTAL_STUFF

PROGRAM DO_TOTAL

USE TOTAL_STUFF
PRINT *, TOTAL(100)

END PROGRAM DO_TOTAL

The module and the program could be in different files. They can be compiled
like subroutines, but unlike subroutines, the module must be available to the
compiler when program DO_TOTAL is compiled.

The scope of variables N and I is function TOTAL; N gets its value 100 by
argument association. The module name TOTAL_STUFF is global and any
program can use the module, which causes the type and definition of function
TOTAL to become available within that program. This is called use association.

When more extensive examples are constructed using such features as internal
procedures within a procedure in a module, there is a need to have a deeper
understanding of scope and association. These topics are introduced briefly in
the following section and discussed in more detail in the Fortran Language
Reference Manual, Volume 2.

12 007–3692–004

Fortran Concepts and Terms [2]

2.1.1 Scoping Units

The scope of a program entity is that part of the entire executable program in
which that entity is known, is available, and can be used. Some of the parts of a
program that constitute the scope of entities are called scoping units. Scoping
units range in extent of inclusiveness from parts of a statement to an entire
program unit.

Some entities have scopes that are something other than a scoping unit. For
example, the scope of a name, such as a variable name, can be global to an
executing program. For more information on name scope and scoping units, see
the Fortran Language Reference Manual, Volume 2.

2.1.2 Association

The term association describes how different entities in the same program unit or
different program units can share values and other properties. It is also a
mechanism by which the scope of an entity is made larger. For example,
argument association allows values to be shared between a procedure and the
program that calls it. Storage association, set up by the use of EQUIVALENCE
and COMMON statements, for example, allows two or more variables to share
storage, therefore values, under certain circumstances. Use association and host
association both allow entities described in one part of a program to be used in
another part of the program. Use association makes entities defined in modules
accessible, and host association makes entities in the containing environment
available to an internal or module procedure. The complete description of all
categories of association are described in the Fortran Language Reference Manual,
Volume 2.

2.2 Program Organization

A collection of program units constitutes an executable program. Program units
can contain other smaller units.

2.2.1 Program Units

A Fortran program unit is one of the following:

• Main program

• External subprogram (subroutine or function)

• Module

007–3692–004 13

Fortran Language Reference Manual, Volume 1

• Block data

A Fortran program must contain one main program and can contain any
number of the other types of program units. Program units define data
environments and the steps necessary to perform calculations. Each program
unit has an END statement to terminate the program unit. Each program unit
also has an identifying initial statement, but the identifying statement for a
main program is optional.

An external subprogram (a function or a subroutine) performs a task or
calculation on entities available to the external subprogram. These entities can
be the arguments to the subprogram that are provided in the reference, entities
defined in the subprogram, or entities made accessible by other means, such as
common blocks. A CALL statement invokes a subroutine. A function is invoked
when its value is needed in an expression. The computational process that is
specified by a function or subroutine subprogram is called a procedure. It may
be invoked from other program units of the Fortran program. Neither module
nor block data program units are executable, so they are not considered to be
procedures. A main program also contains executable constructs, but it is not
classified as a procedure.

A block data program unit contains only data definitions. It specifies initial
values for a restricted set of data objects.

A module contains public definitions that can be made accessible to other
program units and subprograms. It also contains private definitions that are
accessible only within the module. These definitions include data definitions,
type definitions, definitions of subprograms known as module subprograms, and
specifications of procedure interfaces. Module subprograms can be either
subroutine or function subprograms. The procedures they define are called
module procedures. Module subprograms can be invoked by other module
subprograms in the module or by other program units that access the module.

A main program, external subprograms, and module subprograms may contain
internal subprograms, which can be either subroutines or functions. The
procedures they define are called internal procedures. Internal subprograms must
not themselves contain internal subprograms, however. The main program,
external subprogram, or module subprogram that contains an internal
subprogram is referred to as the internal subprogram’s host. Internal
subprograms may be invoked by their host or by other internal subprograms in
the same host.

A statement function also defines a procedure. Executable program units,
module subprograms, and internal subprograms can all contain statement
functions.

14 007–3692–004

Fortran Concepts and Terms [2]

Figure 1, page 15, illustrates the organization of a sample Fortran program.
Large arrows represent use association with the USE statement at the arrow tip.
Small arrows represent subprogram references with the call at the arrow base.

Subroutine

Internal procedure

Main program

Internal procedure

Statement function

Module

Public data
entities

Subroutine

Internal
procedure

Function

Internal
procedure

Function SubroutineInternal procedure

Function

Program

Private data
entities

a10628

Figure 1. Program packaging example

Program units and subprograms are described more fully in the Fortran
Language Reference Manual, Volume 2.

2.2.2 Packaging

The packaging of a program is an important design consideration when
planning a new Fortran application.

007–3692–004 15

Fortran Language Reference Manual, Volume 1

The most important benefit of packaging is the capability to hide information.
Entities can be kept inaccessible except where they are actually needed. This
provides some protection against inadvertent misuse or corruption, thereby
improving program reliability. Packaging can make the logical structure of a
program more apparent by hiding complex details at lower levels. Programs
are therefore easier to comprehend and less costly to maintain. The Fortran
features that provide these benefits are internal procedures and modules.

As previously noted, internal procedures can appear in a main program,
external subroutines, external functions, and module subprograms. They are
known only within their host. The name of an internal procedure must not be
passed as an argument, and an internal procedure must not itself be the host of
another internal procedure. However, a statement function can appear within
an internal procedure. Thus, in some ways, internal procedures are like external
procedures and in other ways they are like statement functions.

Modules provide the most comprehensive opportunities to apply packaging
concepts, as illustrated in Figure 1, page 15. In addition to several levels of
organization and hiding, the entities specified in a module (types, data objects,
procedures, interfaces, and so on) can be kept private to the module or made
available to other scoping units by use association.

2.3 Data Environment

Before a calculation can be performed, its data environment must be developed.
The data environment consists of data objects that possess certain properties,
attributes, and values. The steps in a computational process generally specify
operations that are performed on operands (or objects) to create desired results
or values. Operands can be constants, variables, constructors, or function
references; each has a data type and (if defined) a value. In some cases the type
can be assumed by the processor; in other cases it may be declared. A data
object has attributes other than type. Chapter 4, page 67, discusses data type in
detail; Chapter 5, page 117, discusses the other attributes of program entities;
and Chapter 6, page 187, and Chapter 7, page 215, describe how data objects
are used.

2.3.1 Data Type

The Fortran language provides five intrinsic data types: real, integer, complex,
logical, and character, and it lets you define additional types. Sometimes it is
natural to organize data in combinations consisting of more than one type. For
example, assume that a program is written to monitor the patients in a hospital.

16 007–3692–004

Fortran Concepts and Terms [2]

For each patient, certain information must be maintained, such as the patient’s
name, room number, temperature, pulse rate, medication, and prognosis for
recovery. Because all of this data describes one object (a particular patient), it
would be convenient to have a means to refer to the aggregation of data by a
single name. In Fortran, an aggregation of data values of different types is
called a structure. To use a structure, a programmer must first define the type of
the structure. After the new type is defined, any number of structures of that
type can be declared. This mechanism might seem slightly cumbersome if only
one such structure is needed in a program, but usually several are needed. The
following is an example of a user-defined type with three components:

TYPE PATIENT

INTEGER PULSE_RATE
REAL TEMPERATURE

CHARACTER(LEN = 300) PROGNOSIS

END TYPE PATIENT

After type PATIENT is defined, objects (structures) of the type can be declared.
For example:

TYPE(PATIENT) JOHN_JONES, SALLY_SMITH

2.3.2 Kind

Some intrinsic types have more than one representation (or kind). Fortran
provides both single- and double-precision representations of the real and
complex types; chapter 4 describes these data representations in detail. Fortran
permits more than one representation for the integer, logical, and character
types. The CF90 and MIPSpro 7 Fortran 90 compilers support more than one
representation for the integer and logical types, but they support only a single
character type (ASCII). Alternative representations for the integer type permit
different ranges of integers.

2.3.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a
structure has components, it is considered to be a scalar. A set of scalar objects,
all of the same type, may be arranged in patterns involving columns, rows,
planes, and higher-dimensioned configurations to form arrays. It is possible to
have arrays of structures. An array may have a maximum of seven dimensions.
The number of dimensions is called the rank of the array. It is declared when
the array is declared and cannot change. The size of the array is the total
number of elements and is equal to the product of the extents in each

007–3692–004 17

Fortran Language Reference Manual, Volume 1

dimension. The shape of an array is determined by its rank and its extents in
each dimension. Two arrays that have the same shape are said to be
conformable. The following are examples of array declarations:

REAL COORDINATES(100, 100)

INTEGER DISTANCES(50)

TYPE(PATIENT) MATERNITY_WARD(20)

In Fortran, an array is treated as an object and is allowed to appear in an
expression or be returned as a function result. Intrinsic operations involving
arrays of the same shape are performed element-by-element to produce an
array result of the same shape. There is no implied order in which the
element-by-element operations are performed.

A portion of an array, such as an element or section, can be referenced as a data
object. An array element is a single element of the array and is scalar. An array
section is a subset of the elements of the array and is itself an array.

2.3.4 Dynamic Data

There are three sorts of dynamic data objects in Fortran: pointers, allocatable
arrays, and automatic data objects.

Data objects in Fortran can be declared to have the POINTER attribute. Pointer
objects must be associated with a target before they can be used in any
calculation. This is accomplished by allocation of the space for the target or by
assignment of the pointer to an existing target. The association of a pointer
with a target can change dynamically as a program is executed. If the pointer
object is an array, its size and shape could change dynamically, but its rank is
fixed by its declaration. The following is an example of pointer array
declaration and allocation:

REAL, POINTER :: LENGTHS(:)

ALLOCATE(LENGTHS (200))

Following execution of an ALLOCATE statement, LENGTHS points at (is
associated with) an array with 200 elements. The elements as yet have no
values.

An array can be declared to have the ALLOCATABLE attribute. Space must be
allocated for the array before it can be used in any calculation. The array can be
deallocated and reallocated with a different size as the program executes. The
size and shape can change at each allocation, but the rank is fixed by the

18 007–3692–004

Fortran Concepts and Terms [2]

declaration. The following is an example of allocatable array declaration and
allocation:

REAL, ALLOCATABLE :: LENGTHS(:)

ALLOCATE (LENGTHS(200))

The similarities of these examples reflect the similarity of some of the uses of
allocatable arrays and pointers, but pointers have more functionality. Pointers
can be used to create dynamic data structures, such as linked lists and trees.
The target of a pointer can be changed by reallocation or pointer assignment.
The extents of an allocatable array can be changed only by deallocating and
reallocating the array. If the values of the elements of an allocatable array are to
be preserved, a new array must be allocated and the values moved to the new
array before the old array is deallocated.

An automatic data object can be an array or a character string. Automatic
objects can be declared in a subprogram. These local data objects are created on
entry to the subprogram and disappear when the execution of the subprogram
completes. They are useful in subprograms for temporary arrays and characters
strings whose sizes are different for each reference to the subprogram. The
following is an example of a subprogram unit with automatic array TEMP:

SUBROUTINE SWAP_ARRAYS(A, B)

REAL, DIMENSION(:) :: A, B

REAL, DIMENSION(SIZE(A)) :: TEMP

TEMP = A
A = B

B = TEMP

END SUBROUTINE SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of
the actual argument. TEMP is an automatic array that is created the same size as
A on entry to subroutine SWAP_ARRAYS. SIZE(3I) is an intrinsic function that is
permitted in a declaration statement.

2.4 Program Execution

During program execution, constructs and statements are executed in a
prescribed order. Variables become defined with values and can be redefined
later in the execution sequence. Procedures are invoked, perhaps recursively.
Space can be allocated and later deallocated. Pointers can change their targets.

007–3692–004 19

Fortran Language Reference Manual, Volume 1

2.4.1 Execution Sequence

Program execution begins with the first executable construct in the main
program. An executable construct is an instruction to perform one or more of
the computational actions that determine the behavior of the program or control
the flow of the execution of the program. It can perform arithmetic, compare
values, branch to another construct or statement in the program, invoke a
procedure, or read from or write to a file or device. When a procedure is
invoked, its execution begins with the first executable construct after the entry
point in the procedure. On normal return from a procedure invocation,
execution continues where it left off. The following are examples of executable
statements:

READ(5, *) Z, Y

X = (4.0 * Z) + BASE
IF (X > Y) GO TO 100

CALL CALCULATE(X)

100 Y = Y + 1

Unless a branching statement or control construct is encountered, executable
statements are executed in the order in which they appear in a program unit
until a STOP, RETURN, or END statement is executed. Branch statements specify
a change in the execution sequence and consist of the various forms of GO TO
statements, a procedure reference with alternative return specifiers, and
input/output (I/O) statements with branch label specifiers such as ERR=, END=,
and EOR= specifiers. The control constructs (IF, CASE, and DO) can cause
internal branching implicitly within the structure of the construct. Chapter 8,
page 299, discusses control flow within a program in detail.

2.4.2 Definition and Undefinition

Most variables have no value when execution begins; they are considered to be
undefined. Exceptions are variables that are initialized in DATA statements, type
declaration statements, or variables whose type is a structure for which full
default initialization is specified in the structure definition (all components must
be fully initialized); these are considered to be defined. A variable can acquire a
value or change its current value, typically by the execution of an assignment
statement or an input statement. Thus it can assume different values at
different times, and under some circumstances it can become undefined. Defined
and undefined are the Fortran terms that are used to specify the definition status
of a variable. The Fortran Language Reference Manual, Volume 2, describes the
events that cause variables to become defined and undefined.

20 007–3692–004

Fortran Concepts and Terms [2]

A variable is considered to be defined only if all parts of it are defined. For
example, all elements of an array, all components of a structure, or all
characters of a character string must be defined; otherwise, the array, structure,
or string is undefined. Fortran permits zero-sized arrays and zero-length
strings; these are always considered to be defined.

Pointers have both a definition status and an association status. When
execution begins, the association status of all pointers is undefined unless one
of the following conditions is present:

• The pointers are initialized with a NULL(3I) intrinsic procedure in a type
declaration statement.

• The pointers are initialized in a DATA statement.

• The pointer is a component with default initialization specified.

During execution a pointer can become nullified by the execution of a NULLIFY
statement, in which case its association status becomes disassociated, or it may
become associated with a target by the execution of an ALLOCATE or pointer
assignment statement, in which case its association status becomes associated.
Even when the association status of a pointer is defined, the pointer is not
considered to be defined unless the target with which it is associated is defined.
Pointer targets become defined in the same way that other variables becomes
defined, typically by the execution of an assignment or input statement. When
an allocatable array is allocated by the execution of an ALLOCATE statement, it
is undefined until some other action occurs that causes it to become defined
with values for all array elements.

2.4.3 Dynamic Behavior

Fortran supports the following types of dynamic behavior:

• Recursion

• Allocation and deallocation

• Pointer assignment

Many algorithms can be expressed with the use of recursion, which occurs when
a subroutine or function references itself, either directly or indirectly. The
keyword RECURSIVE must be present in the SUBROUTINE or FUNCTION
statement if the procedure is referenced recursively. Recursive subroutines and
functions are described in the Fortran Language Reference Manual, Volume 2.

007–3692–004 21

Fortran Language Reference Manual, Volume 1

No space exists for a pointer until the pointer is allocated or associated with an
existing target. No space exists for an allocatable array until the array is
allocated. The rank of array pointers and allocatable arrays is fixed by
declaration, but the extents in each dimension (and thus the size of the arrays)
is determined during execution by calculation or from input values.

The ALLOCATE and DEALLOCATE statements give Fortran programmers
mechanisms to configure objects to the appropriate shape. Only pointers and
allocatable arrays can be allocated. It is not possible to deallocate an object
unless it was previously allocated, and it is not possible to deallocate a part of
an object unless it is a pointer component of a structure. It is possible to inquire
whether a pointer is currently associated and whether an allocatable array is
currently allocated. Chapter 5, page 117, describes the declaration of pointers
and allocatable arrays. Chapter 6, page 187, describes the ALLOCATE and
DEALLOCATE statements. The Fortran Language Reference Manual, Volume 2,
describes the ASSOCIATED(3I) intrinsic inquiry function for pointers and the
ALLOCATED(3I) intrinsic inquiry function for allocatable arrays.

Pointers are more flexible than allocatable arrays, but they are also more
complicated and less efficient. A pointer need not be an array; it can be a scalar
of any type. A pointer need not be associated with allocated space; any object
with the TARGET attribute can become a pointer target. A pointer assignment
statement is provided to associate a pointer with a target (declared or
allocated). It makes use of the symbol => rather than the single character =. In
all other respects, pointer assignment statements are executed in the same way
that ordinary assignment statements are executed, except that instead of
assigning a value they associate a pointer with a target, as is shown in the
following example:

REAL, TARGET :: VECTOR(100)

REAL, POINTER :: ODDS(:)

. . .

ODDS => VECTOR(1:100:2)

The pointer assignment statement associates ODDS with the odd elements of
VECTOR. The following assignment statement defines each odd element of
VECTOR with the value 1.5:

ODDS = 1.5

Later in the execution sequence, pointer ODDS could become associated with a
different target by pointer assignment or allocation, as long as the target is a
one-dimensional, real array. Chapter 7, page 215, describes the pointer
assignment statement.

22 007–3692–004

Fortran Concepts and Terms [2]

2.5 Summary of Forms

This section shows the forms of the higher-level components of a Fortran
program. The notation used in most of the forms is the same as that used to
show the syntax forms in all the remaining sections of this manual. The
complete Backus-Naur form (BNF), as given in the Fortran standard, is
included in the Fortran Language Reference Manual, Volume 3.

2.5.1 Program Units

Fortran defines a program_unit as follows:

executable_program is program_unit
[program_unit]...

program_unit is main_program

or external_subprogram

or module

or block_data

main_program is [program_stmt]
[specification_part]
[execution_part]
[internal_subprogram_part]

end_program_stmt

external_subprogram is functional_program

or subroutine_subprogram

function_subprogram is function_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]

end_function_stmt

subroutine_subprogram is subroutine_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]

end_subroutine_stmt

007–3692–004 23

Fortran Language Reference Manual, Volume 1

module is module_stmt
[specification_part]
[module_subprogram_part]

end_subroutine_stmt

block_data is block_data_stmt
[specification_part]

end_block_data_stmt

specification_part is [use_stmt]...
[implicit_part]
[declaration_construct]...

implicit_part is [implicit_part_stmt]...
implicit_stmt

implicit_part_stmt is implicit_stmt

or parameter_stmt

or format_stmt

or entry_stmt

declaration_construct is derived_type_def

or interface_block

or type_declaration_stmt

or specification_stmt

or parameter_stmt

or format_stmt

or entry_stmt

or stmt_function_stmt

execution_part is executable_construct
[execution_part_construct]...

execution_part_construct is executable_construct

or format_stmt

or data_stmt

or entry_stmt

internal_subprogram_part is contains_stmt
internal_subprogram
[internal_subprogram]...

24 007–3692–004

Fortran Concepts and Terms [2]

internal_subprogram is function_subprogram

or subroutine_subprogram

module_subprogram_part is contains_stmt
module_subprogram
[module_subprogram]...

module_subprogram is function_subprogram

or subroutine_subprogram

specification_stmt is access_stmt

or allocatable_stmt

or common_stmt

or data_stmt

or dimension_stmt

or equivalence_stmt

or external_stmt

or intent_stmt

or intrinsic_stmt

or namelist_stmt

or optional_stmt

or pointer_stmt

or save_stmt

or target_stmt

executable_construct is action_stmt

or case_construct

or do_construct

or forall_construct

or if_construct

or where_construct

action_stmt is allocate_stmt

or arithmetic_if_stmt

or assign_stmt

007–3692–004 25

Fortran Language Reference Manual, Volume 1

or assigned_goto_stmt

or assignment_stmt

or backspace_stmt

or call_stmt

or close_stmt

or computed_goto_stmt

or continue_stmt

or cycle_stmt

or deallocate_stmt

or endfile_stmt

or end_function_stmt

or end_program_stmt

or end_subroutine_stmt

or exit_stmt

or forall_stmt

or goto_stmt

or if_stmt

or inquire_stmt

or nullify_stmt

or open_stmt

or pause_stmt

or pointer_assignment_stmt

or print_stmt

or read_stmt

or return_stmt

or rewind_stmt

or stop_stmt

or where_stmt

or write_stmt

26 007–3692–004

Fortran Concepts and Terms [2]

2.5.2 Main Program

Typically, a main program takes the following form:

[PROGRAM program_name]
[specification_part]
[execution_part]
[CONTAINS
internal_subprogram
[internal_subprogram] ...]
END [PROGRAM [program_name]]

2.5.3 External Subprogram

Typically, an external subprogram takes one of the following forms:

function_stmt
[specification_part]
[execution_part]
[CONTAINS
internal_subprogram
[internal_subprogram] ...]
end_function_stmt

subroutine_stmt
[specification_part]
[execution_part]
[CONTAINS
internal_subprogram
[internal_subprogram] ...]
end_subroutine stmt

2.5.4 Module

Typically, a module takes the following form:

007–3692–004 27

Fortran Language Reference Manual, Volume 1

MODULE module_name
[specification_part]
[CONTAINS
module_subprogram
[module_subprogram] ...]
END [MODULE [module_name]]

2.5.5 Block Data

Typically, a block data program unit takes the following form:

BLOCK DATA [block_data_name] [specification_part]
END [BLOCK DATA [block_data_name]]

2.5.6 Internal Subprogram

Typically, an internal subprogram takes one of the following forms:

function_stmt [specification_part] [execution_part] end_function_stmt

subroutine_stmt [specification_part] [executable_part] end_subroutine stmt

2.5.7 Procedure Headings

The FUNCTION and SUBROUTINE statements are defined as follows:

[prefix] FUNCTION function_name ([dummy_argument_list])
[RESULT (result_name)]

[prefix] SUBROUTINE subroutine_name [([dummy_argument_list])]

2.5.8 Procedure Endings

The END FUNCTION and END SUBROUTINE statements are defined as follows:

END [FUNCTION [function_name]]

END [SUBROUTINE [subroutine_name]]

28 007–3692–004

Fortran Concepts and Terms [2]

2.5.9 Specification Constructs

A specification part generally can contain any of the following. Some program
units or subprograms may not allow some of these specification constructs. See
the descriptions for each program unit or subprogram description for
restrictions.

• USE statements

• PARAMETER statements

• FORMAT statements

• ENTRY statements

• Derived type definitions

• Interface blocks

• Type declaration statements

• Other specification statements

2.5.10 Derived-type Definition

Typically, derived-type definitions take the following form:

TYPE [[, access_spec] ::] type_name
[PRIVATE]
[SEQUENCE]
type_spec [[, component_attr_spec_list] ::] component_decl_list ...
[type_spec [[, component_attr_spec_list] ::]

component_decl_list ...] ...
END TYPE [type_name]

2.5.11 Interface Block

Typically, an interface block takes the following form:

INTERFACE [generic_spec]
[interface_body] ...
[MODULE PROCEDURE procedure_name_list] ...
END INTERFACE

007–3692–004 29

Fortran Language Reference Manual, Volume 1

2.5.12 Specification Statements

This section lists the general forms for specification statements. The BNF used
here is an abbreviated format and is used only in this section. The specific
formats are described in later sections of this manual. The specification
statements are as follows:

30 007–3692–004

Fortran Concepts and Terms [2]

ALLOCATABLE [::] allocatable_array_list

AUTOMATIC automatic_list ...

COMMON [/ [common_block_name] /] common_block_object_list

DATA data_statement_object_list / data_statement_value_list /

DIMENSION array_dimension_list

EQUIVALENCE equivalence_set_list

EXTERNAL external_name_list

FORMAT ([format_item_list])

IMPLICIT implicit_spec

INTENT (intent_spec) [::] dummy_argument_name_list

INTRINSIC intrinsic_procedure_name_list

NAMELIST / namelist_group_name / namelist_group_object_list

OPTIONAL [::] optional_object_list

PARAMETER (named_constant_definition_list)

POINTER [::] pointer_list

PUBLIC [[::] module_entity_name_list]

PRIVATE [[::] module_entity_name_list]

SAVE [[::] saved_object_list]

TARGET [::] target_list

007–3692–004 31

Fortran Language Reference Manual, Volume 1

USE module_name [, rename_list]

USE module_name , ONLY : [access_list]

type_spec [[, attr_spec] ... ::] object_declaration_list

VOLATILE entity_decl_list

ANSI/ISO: The Fortran standard does not specify the AUTOMATIC or
VOLATILE attributes.

Note: The VOLATILE attribute is not supported on UNICOS or UNICOS/mk
platforms.

2.5.13 Type Declaration Statements

Typically, the type declaration statements take the following form:

TYPE (type_name)

LOGICAL [([KIND=] kind_parameter)]

CHARACTER*char_length

CHARACTER (KIND= kind_parameter [, LEN= length_parameter])

CHARACTER ([LEN=] length_parameter [, [KIND=] kind_parameter])

CHARACTER [([LEN=] length_parameter)]

COMPLEX [([KIND=] kind_parameter)]

DOUBLE PRECISION

REAL [([KIND=] kind_parameter)]

INTEGER [([KIND=] kind_parameter)]

32 007–3692–004

Fortran Concepts and Terms [2]

2.5.14 Attribute Specifications

Section 2.5.12, page 30, introduced attr_spec. Typically, attribute specifications
take the following form:

ALLOCATABLE

AUTOMATIC

DIMENSION (array_spec)

EXTERNAL

INTENT (intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

TARGET

VOLATILE

ANSI/ISO: The Fortran standard does not specify the AUTOMATIC or
VOLATILE attributes.

Note: The VOLATILE attribute is not supported on UNICOS or UNICOS/mk
platforms.

2.5.15 Execution Part

An execution part can contain the following:

007–3692–004 33

Fortran Language Reference Manual, Volume 1

• action_statement

• case_construct

• do_construct

• if_construct

• where_construct

2.5.16 Action Statements

Typically, action statements take the following form:

34 007–3692–004

Fortran Concepts and Terms [2]

ALLOCATE (allocation_list [, STAT= scalar_integer_variable])

ASSIGN label TO scalar_integer_variable

BACKSPACE external_file_unit

BACKSPACE (position_spec_list)

BUFFER IN (id, mode) (start_loc, end_loc)

BUFFER OUT (id, mode) (start_loc, end_loc)

CALL subroutine_name [([actual_argument_spec_list])]

CLOSE (close_spec_list)

CONTINUE

CYCLE [do_construct_name]

DEALLOCATE (name_list [, STAT= scalar_integer_variable])

ENDFILE external_file_unit

ENDFILE (position_spec_list)

EXIT [do_construct_name]

FORALL forall_header forall_assignment_stmt

GO TO label

GO TO (label_list) [,] scalar_integer_expression

GO TO scalar_integer_variable [[,] (label_list)]

007–3692–004 35

Fortran Language Reference Manual, Volume 1

IF (scalar_logical_expression) action_statement

IF (scalar_numeric_expression) label, label, label

INQUIRE (inquire_spec_list) [output_item_list]

NULLIFY (pointer_object_list)

OPEN (connect_spec_list)

PAUSE [access_code]

PRINT format [, output_item_list]

READ (io_control_spec_list) [input_item_list]

READ format [, input_item_list]

RETURN [scalar_integer_expression]

REWIND external_file_unit

REWIND (position_spec_list)

STOP [access_code]

WHERE (array_logical_expression) array_assignment_statement

WRITE (io_control_spec_list) [output_item_list]

pointer_variable => target_expression

variable = expression

2.5.17 CASE Construct

Typically, CASE constructs take the following form:

36 007–3692–004

Fortran Concepts and Terms [2]

SELECT CASE (case_expr)
[CASE case_selector

block] ...
[CASE DEFAULT

block]
END SELECT

2.5.18 DO Construct

Typically, DO constructs take the following form:

DO [label]
block

end_do

DO [label] [,] do_variable = scalar_numeric_expr,
scalar_numeric_expr [, scalar_numeric_expr]

block
end_do

DO [label] [,] WHILE (scalar_logical_expr)
block

end_do

2.5.19 IF Construct

Typically, IF constructs take the following form:

IF (scalar_logical_expr) THEN
block

[ELSE IF (scalar_logical_expr) THEN
block] ...

[ELSE
block]

END IF

2.5.20 FORALL Construct

Typically, FORALL constructs take the following form:

007–3692–004 37

Fortran Language Reference Manual, Volume 1

FORALL forall_header
[assignment_stmt] |
[forall_assignment_stmt] |
[forall_construct] |
[forall_stmt] |
[pointer_assignment_stmt] |
[where_construct] |
[where_stmt]
END FORALL

2.5.21 WHERE Construct

Typically, WHERE constructs take the following form:

[where_construct_name:] WHERE (mask_expr)
[where_body_construct] ...

[ELSEWHERE (mask_expr) [where_construct_name]
[where_body_construct] ...]

[ELSEWHERE
[where_body_construct] ...]

END WHERE [where_construct_name]

2.6 Ordering Requirements

Within program units and subprograms, there are ordering requirements for
statements and constructs. The syntax rules in the previous section do not fully
describe the ordering requirements. They are illustrated in both Figure 2, page
39, and Figure 3, page 40. Generally, data declarations and specifications must
precede executable constructs and statements, although FORMAT, DATA,
NAMELIST, and ENTRY statements can appear among the executable statements.
USE statements, if any, must appear first. Internal or module subprograms, if
any, must appear last following a CONTAINS statement.

ANSI/ISO: The Fortran standard does not allow NAMELIST statements to be
intermixed with executable statements and constructs. The CF90 and
MIPSpro 7 Fortran 90 compilers ease this restriction.

In Figure 2, page 39, a vertical line separates statements and constructs that can
be interspersed; a horizontal line separates statements that must not be
interspersed.

38 007–3692–004

Fortran Concepts and Terms [2]

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA statement

USE statements

FORMAT
and
ENTRY
statements

IMPLICIT NONE

PARAMETER
statements

PARAMETER,
NAMELIST,
and DATA
statements

DATA and
NAMELIST
statements

Derived-type definitions,
interface blocks,
type declaration statements,
statement function
statements, and specification
statements

IMPLICIT
statements

Executable constructs

CONTAINS statement

Internal subprograms or module subprograms

END statement

a10629

Figure 2. Requirements on statement ordering

There are restrictions on the places where some statements may appear. Figure
3, page 40, summarizes these restrictions.

Note: Miscellaneous declarations are PARAMETER statements, IMPLICIT
statements, type declaration statements, and specification statements.

007–3692–004 39

Fortran Language Reference Manual, Volume 1

a10843

Scoping unit

USE statement

ENTRY statement

FORMAT statement

Misc. declarations (see note)

DATA statement

Derived-type definition

Interface block

Statement function

Executable statement

CONTAINS

M
ain

pr
og

ra
m

M
od

ule

Bloc
k

da
ta

Exte
rn

al

su
bp

ro
g

M
od

ule

In
te

rn
al

In
te

rfa
ce

su
bp

ro
g

su
bp

ro
g

bo
dy

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

Yes

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

Yes

No

Yes

Yes

No

No

No

Note: Miscellaneous declarations are PARAMETER statements, IMPLICIT statements,
type declaration statements, and specification statements.

Figure 3. Restrictions on the appearance of statements

2.7 Example Fortran Program

The following simple Fortran program consists of one program unit, the main
program. Three data objects are declared: H, T, and U. These become the loop
indexes in a triply-nested loop structure that contains an IF statement that
conditionally executes an I/O statement.

PROGRAM SUM_OF_CUBES

! This program prints all 3-digit numbers that

! equal the sum of the cubes of their digits.

INTEGER :: H, T, U

DO H = 1, 9

DO T = 0, 9
DO U = 0, 9

IF (100*H + 10*T + U == H**3 + T**3 + U**3) &

PRINT "(3I1)", H, T, U

END DO

END DO
END DO

40 007–3692–004

Fortran Concepts and Terms [2]

END PROGRAM SUM_OF_CUBES

This Fortran program produces the following output:

153

370

371

407

007–3692–004 41

Language Elements and Source Form [3]

This chapter describes the language elements that a Fortran statement can
contain. Language elements consist of lexical tokens, which include names,
keywords, operators, and statement labels. Rules for forming lexical tokens
from the characters in the Fortran character set are also presented.

3.1 CF90 and MIPSpro 7 Fortran 90 Character Set

The CF90 and MIPSpro 7 Fortran 90 character sets contain the following
characters:

• The Fortran character set, which includes the 26 uppercase letters of the
alphabet, the corresponding 26 lowercase letters, and several special
characters.

• The numerical digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• The underscore character (_).

• The newline and tab characters, which are control characters and have no
graphic representation. These characters are part of the processor-dependent
control characters as allowed by the standard.

Table 1, page 43, shows the special characters of the CF90 and MIPSpro 7
Fortran 90 character sets.

Table 1. CF90 and MIPSpro 7 Fortran 90 special characters

Graphic Character name Graphic Character name

Blank : Colon

= Equals ! Exclamation point

+ Plus " Quotation mark

- Minus % Percent

* Asterisk & Ampersand

/ Slash ; Semicolon

(Left parenthesis < Less than

007–3692–004 43

Fortran Language Reference Manual, Volume 1

Graphic Character name Graphic Character name

) Right parenthesis > Great than

, Comma ? Question mark

’ Apostrophe $ Currency symbol

@ At sign1 . Decimal point or period

ANSI/ISO: The at sign (@) is not included in the Fortran character set. The
newline and tab characters are not part of the graphic character set as defined
by the standard, but the standard allows them as part of the
processor-dependent control character set.

Note: The MIPSpro 7 Fortran 90 compiler does not support the at sign (@) on
IRIX systems.

The 52 letters define the syntax class letter.

In most cases, the compiler is not case sensitive; lowercase letters are considered
the same as uppercase letters. In the following cases, however, lowercase and
uppercase letters are considered to have different data values:

• Within a character constant

• Within a quotation mark, apostrophe, or H edit descriptor

• Within a Hollerith constant (nonstandard)

ANSI/ISO: Hollerith data is not included in the Fortran standard.

The CF90 and MIPSpro 7 Fortran 90 compilers consider the following two
statements to be equivalent:

PRINT *, N

Print *, n

The CF90 and MIPSpro 7 Fortran 90 compilers distinguish between uppercase
and lowercase letters in the FILE= or NAME= specifier in an OPEN or an
INQUIRE statement.

The digits 0 through 9 define the syntax class digit. The digits are assumed to
be decimal numbers when used to describe a numeric value, except in binary,

1 Use of the at sign (@) differs depending on your hardware platform. On UNICOS and UNICOS/mk systems, the
compiler allows you to use the at sign (@) in certain cases; these cases are described in Section 3.2.2, page 47. Use
of the @ symbol is not permitted on IRIX systems.

44 007–3692–004

Language Elements and Source Form [3]

octal, and hexadecimal (BOZ) literal constants or input/output (I/O) records
corresponding to B, O, or Z edit descriptors.

For example, in the following DATA statement, the digits of the first constant are
decimal digits, those of the second constant are binary digits, and those of the
third are hexadecimal digits:

DATA X, I, J / 4.89, B’1011’, Z’BAC91’ /

The underscore can be used to make names more readable. For example, in the
identifier NUMBER_OF_CARS, each underscore is used to separate the obvious
English words. It is a significant character in any name. An underscore cannot
be used as the first character of a name, but it can be the last character. An
underscore is also used to separate the kind value from the actual value of a
literal constant (for example, 123_2).

There are 22 special characters used for operators like multiply and add. They
are also used as separators or delimiters in Fortran statements. Separators and
delimiters make the form of a statement unambiguous.

ANSI/ISO: On UNICOS and UNICOS/mk systems, the at sign (@) can be
used in an identifier in the same way that you would use an underscore (_).
The at sign cannot be used as the first character in an identifier. Using the at
sign is not recommended because it is reserved for internal use.

Note: The MIPSpro 7 Fortran 90 compiler does not support the at sign (@).

Fortran’s treatment of uppercase and lowercase letters can lead to portability
problems when calling subprograms written in other languages. The problem
occurs because the standard does not specify the case of letters used for
external names. The following program fragment illustrates the problem:

007–3692–004 45

Fortran Language Reference Manual, Volume 1

EXTERNAL FOO

. . .
CALL FOO

. . .

END

The CF90 compiler uses uppercase for external names, so the CF90 compiler
would use FOO as the external name. The MIPSpro 7 Fortran 90 compiler
converts external names into lowercase and appends an underscore, so the
MIPSpro 7 Fortran 90 compiler would use foo_ as the external name. If the
subprogram were written in C, which is case sensitive, and if foo were written
in lowercase, the external name used in C would then be different from the
name produced by the CF90 or MIPSpro 7 Fortran 90 compiler.

The NAME compiler directive allows you to specify a case-sensitive external
name in a Fortran program. You can use this directive, for example, when
writing calls to C routines. For more information on the NAME directive, see the
CF90 Commands and Directives Reference Manual, or the MIPSpro 7 Fortran 90
Commands and Directives Reference Manual.

3.2 Lexical Tokens

A statement is constructed from low-level syntax. The low-level syntax
describes the basic language elements, called lexical tokens, in a statement. A
lexical token is the smallest meaningful unit of a statement and can consist of 1
or more characters. Tokens are names, keywords, literal constants (except for
complex literal constants), labels, operator symbols, comma, =, =>, :, ::, ;, %,
and delimiters. A literal of type complex consists of several tokens. Examples
of operator symbols are + and //.

Delimiters are pairs of symbols that enclose parts of a statement. The following
symbol pairs are delimiters:

/ ... /

(...)

(/ ... /)

In the following statements, the slashes distinguish the value list from the object
list in a DATA statement, the parentheses are delimiters that mark the beginning
and end of the argument list in the CALL statement, and the pairs (/ and /)
mark the beginning and end of the elements of an array constructor:

DATA X, Y / 1.0, -10.2/
CALL PRINT_LIST(LIST, SIZE)

46 007–3692–004

Language Elements and Source Form [3]

VECTOR = (/ 10, 20, 30, 40 /)

3.2.1 Statement Keywords

Statement keywords appear in uppercase letters in the syntax rules. Some
statement keywords identify the statement, such as in the following DO
statement:

DO I = 1, 10

DO is a statement keyword that identifies the DO statement. Other keywords
identify parts of a statement such as ONLY in a USE statement or WHILE in one
of the forms of a DO construct, as follows:

DO WHILE(.NOT. FOUND)

Others specify options in the statement such as IN, OUT, or INOUT in the
INTENT statement.

There are three statements in Fortran that have no statement keyword. They are
the assignment statement, the pointer assignment statement, and the statement
function.

Some sequences of capital letters in the formal syntax rules are not statement
keywords. For example, EQ, in the lexical token .EQ., and EN, as an edit
descriptor, are not statement keywords.

A dummy argument keyword, a different sort of keyword, is discussed in the
Fortran Language Reference Manual, Volume 2.

3.2.2 Names

Variables, named constants, program units, common blocks, procedures,
arguments, constructs, derived types (types for structures), namelist groups,
structure components, dummy arguments, and function results are among the
elements in a program that have a name. Fortran permits up to 31 characters in
a name.

character is alphanumeric_character

or special_character

alphanumeric_character is letter

007–3692–004 47

Fortran Language Reference Manual, Volume 1

or digit

or underscore

EXT or currency_symbol

EXT or at_sign

underscore is _

EXT currency_symbol is $

EXT at_sign is @

name is letter [alphanumeric_character]...

A name must begin with a letter and can consist of letters, digits, and
underscores. The CF90 and MIPSpro 7 Fortran 90 compilers allow you to use
the underscore (_), at sign (@), and dollar sign ($) in a name, but none of these
can be the first character of a name. Use of @ and $ is not recommended,
however, because these are intended for internal use.

The following are examples of names:

A

CAR_STOCK_NUMBER

A__BUTTERFLY

Z_28
TEMP_

ANSI/ISO: The Fortran standard does not allow the dollar sign ($) or the at
sign (@) character in a name. The at sign (@) is not included in the standard
character set.

Note: The MIPSpro 7 Fortran 90 compiler does not support the at sign (@).

3.2.3 Constants

A constant is a syntactic notation for a value. The value can be of any intrinsic
type; that is, it can be a numeric (integer, real, or complex) value, a character
value, or a logical value. A constant is defined as follows:
wide

48 007–3692–004

Language Elements and Source Form [3]

constant is literal_constant

or named_constant

literal_constant is int_literal_constant

or real_literal_constant

or logical_literal_constant

or complex_literal_constant

or char_literal_constant

or boz_literal_constant

EXT or typeless_constant

EXT typeless_constant is octal_typeless_constant

or hexadecimal_typeless_constant

or binary_typeless_constant

EXT octal_typeless_constant is digit [digit...] B

or O" digit [digit...] "

or O’ digit [digit...] ’

or " digit [digit...] "O

or ’ digit [digit...] ’O

EXT hexadecimal_typeless_constant is X’ hex_digit [hex_digit...]’

or X" hex_digit [hex_digit...] "

or ’ hex_digit [hex_digit...] ’X

or " hex_digit [hex_digit...] "X

or Z’ hex_digit [hex_digit...] ’

or Z" hex_digit [hex_digit...] "

EXT binary_typeless_constant is B’ digit [digit...] ’

or B" digit [digit...] "

constant is literal_constant

or named_constant

named_constant is name

007–3692–004 49

Fortran Language Reference Manual, Volume 1

int_constant is constant

char_constant is constant

The following notes pertain to the preceding format:

• digit must have one of the values 0 through 7 in octal_typeless_constant

• digit must have a value of 0 or 1 in binary_typeless_constant

• The B, O, X, and Z characters can be in uppercase or lowercase.

A value that does not have a name is a literal constant. The following are
examples of literal constants:

1.23

400

(0.0, 1.0)

"ABC"
B’0110110’

.TRUE.

The BOZ constants are described in Section 4.3.1.3, page 77.

No literal constant can be array-valued or of derived type. Section 4.3, page 74
describes the formats of literal constants in more detail.

A value that has a name is called a named constant and can be of any type,
including a derived type. A named constant can also be array-valued. In the
following statements, X_AXIS and MY_SPOUSE are examples of named
constants:

REAL, DIMENSION(2), PARAMETER :: X_AXIS = (/ 0.0, 1.0 /)

TYPE(PERSON), PARAMETER :: MY_SPOUSE = PERSON(39, ’PAT’)

Note that the entity on the right of the equal sign is not itself a constant but a
constant expression. The forms for defining named constants are described in
more detail in Section 5.5.1, page 154.

3.2.4 Operators

Operators are used with operands in expressions to produce other values. The
following are examples of intrinsic operators:

50 007–3692–004

Language Elements and Source Form [3]

Operator Representation

* Multiplication of numeric values

// Concatenation of character values

== Comparison for equality (same as .EQ.)

.OR. Logical disjunction

.NOT. Logical negation

The intrinsic_operators are defined as follows:

intrinsic_operator is power_op

or mult_op

or add_op

or concat_op

or rel_op

or not_op

or and_op

or or_op

or equiv_op

power_op is **

mult_op is *

or /

add_op is +

or -

concat_op is //

rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

007–3692–004 51

Fortran Language Reference Manual, Volume 1

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

not_op is .NOT.

EXT or .N.

and_op is .AND.

EXT or .A.

or_op is .OR.

EXT or .O.

equiv_op is .EQV.

or .NEQV.

EXT exclusive_disjunct_op is .XOR.

EXT or .X.

The abbreviations .A., .O., .N., and .X. are synonyms for .AND., .OR.,
.NOT., and .XOR., respectively. If the abbreviated operator is overloaded in an
interface block as a defined operator, the abbreviated form of the intrinsic
operator cannot be used in any scope in which the defined operator is accessible.

ANSI/ISO: The Fortran standard does not specify the .A., .O., or .N.,
abbreviations for the logical operators, nor does it specify the .XOR. operator
or its .X. abbreviation. The Fortran standard does not specify the .LG. or
<> operators.

You can define operators in addition to the intrinsic operators. User-defined
operators begin with a period (.), followed by a sequence of up to 31 letters,
and end with a period (.), except that the letter sequence must not be the
same as any intrinsic operator defined by the Fortran standard or the logical
constants .FALSE. or .TRUE.

52 007–3692–004

Language Elements and Source Form [3]

3.2.5 Statement Labels

A label can be used to identify a statement. A label consists of 1 to 5 decimal
digits, one of which must be nonzero. If a statement has a label, it is uniquely
identified and the label can be used in DO constructs, CALL statements,
branching statements, and I/O statements.

Leading zeros in a label are not significant. In other words, the labels 020 and
20 are considered to be the same label. A statement label is local to a scoping
unit. This means that a program unit can contain more than one definition of
the same label as long as the labels are defined in different scoping units. For
example, a main program and a contained internal subprogram can both define
the same statement label. The cases in which duplicate labels can be used in the
same program unit are explained as part of the general treatment of the scope
of entities in the Fortran Language Reference Manual, Volume 2.

The following are examples of statements with labels:

100 CONTINUE

21 X = X + 1.2

101 FORMAT (1X, 2F10.2)

Fortran syntax does not permit a statement with no content. This is sometimes
referred to as a blank statement. Such a statement is always treated as a
comment; therefore, if such a statement is created, it must not be labeled. For
example, each of the following lines is nonstandard Fortran. They generate an
error message from the CF90 and MIPSpro 7 Fortran 90 compilers:

10

X=0;101;

3.3 Source Form

A Fortran program consists of statements, comments, and INCLUDE lines. This
collection of statements, comments, and INCLUDE lines is called source text. A
statement consists of one or more lines of source text and is constructed from
low-level syntax.

The lines within a program unit (except comment lines) and the order of the
lines are, in general, significant.

Because all program units terminate with their own END statement, lines
following such an END statement are never part of the preceding program unit;
they are part of the program unit that follows. END statements can be continued.

007–3692–004 53

Fortran Language Reference Manual, Volume 1

ANSI/ISO: The Fortran standard does not describe END statement
continuation.

There are two source forms for writing source text: free source form and fixed
source form.

Note: The Fortran standard has declared fixed source form to be obsolescent.
The preferred alternative is free source form.

Fixed source form is the default for Fortran source files with a .f or .F suffix.
Free source form is the default source for Fortran source files with a .f90 or
.F90 suffix. The compiler allows you to use the FIXED and FREE compiler
directives to switch from one source form to the other within a program unit.
The f90(1) command line allows you to override the source form implied by
the input file suffix. See the CF90 Commands and Directives Reference Manual, or
the MIPSpro 7 Fortran 90 Commands and Directives Reference Manual, for
information on the f90(1) command line and on the FIXED and FREE compiler
directives. Section 3.4, page 63, describes a way to write Fortran statements so
that the source text is acceptable to both free and fixed source forms.

ANSI/ISO: The Fortran standard does not describe compiler directives or
command lines.

Characters that form the value of a character literal constant, a Hollerith
constant, or a character string edit descriptor (quotation mark, apostrophe, or H
edit descriptor) are in a character context. The characters in a character context
do not include the delimiters used to indicate the beginning and end of the
character constant or string. Also, the ampersands (&) in free source form,
which are used to indicate that a character string is being continued and used
to indicate the beginning of the character string on the continued line, are never
part of the character string value and thus are not in character context.

ANSI/ISO: The Fortran standard does not describe Hollerith constants.

The rules that apply to characters in a character context are different from the
rules that apply to characters in other contexts. For example, blanks are always
significant in a character context but are never significant in other parts of a
program written using fixed source form. The following code fragment
illustrates this:

CHAR = CHAR1 // "Mary K. Williams"

! The blanks within the character string

! (within the quotation marks) are significant.

! The next two statements are equivalent
! in fixed source form.

DO2I=1,N

54 007–3692–004

Language Elements and Source Form [3]

DO 2 I = 1, N

Comments can contain any printable character.

3.3.1 Free Source Form

In free source form, the only restriction on statement positioning within a line is
that the line itself cannot contain more than 132 characters. A blank character is
significant and may be required to separate lexical tokens.

Blank characters are significant everywhere, but a sequence of blank characters
outside a character context is treated as a single blank character. They can be
used freely between tokens and delimiters to improve the readability of the
source text. For example, the following two statements are interpreted
identically:

SUM=SUM+A(I)

SUM = SUM + A (I)

Each line can contain from 0 through 132 characters.

The exclamation mark (!), not in character context, indicates the beginning of a
comment that ends with the end of the line. A line can consist of nothing but a
comment. Comments, including the !, are ignored and do not alter the
interpretation of statements in any way.

The CF90 and MIPSpro 7 Fortran 90 compilers support compiler directives.
Compiler directives are lines inserted into source code that specify actions to be
performed by the compiler. Compilers other than the CF90 and MIPSpro 7
Fortran 90 compilers may treat compiler directive lines as comments. For more
information on compiler directives, see the CF90 Commands and Directives
Reference Manual, or the MIPSpro 7 Fortran 90 Commands and Directives Reference
Manual.

A line whose first nonblank character is an exclamation mark is called a
comment line.

The following is an example of a comment line:

! Begin the next iteration.

The following is an example of a statement with a trailing comment:

ITER = ITER + 1 ! Begin the next iteration.

007–3692–004 55

Fortran Language Reference Manual, Volume 1

An ampersand (&), not in a character context, is a continuation symbol and
must be followed by one of the following:

• Zero or more blanks.

• A comment and the end of the line. If the line following this line is not a
comment line; it is a continuation line.

The following is an example of a continued line and a continuation line:

FORCE = G * MASS1 * & ! This is a continued line.
MASS2 / R**2 ! This is a continuation line.

The CF90 and MIPSpro 7 Fortran 90 compilers allow a statement to be
continued with up to 99 continuation lines.

ANSI/ISO: If you are using free source form, the Fortran standard allows no
more than 39 continuation lines within a statement.

No line can contain an ampersand as the only nonblank character before an
exclamation mark. Comment lines cannot be continued. That is, the ampersand
as the last character in a comment is part of the comment and does not indicate
continuation.

A line with only blank characters or with no characters is treated as a comment
line.

More than one statement or partial statement can appear on a line. The
statement separator is the semicolon (;), provided it is not in a character
context. Multiple successive semicolons on a line with or without blanks
intervening are considered as a single separator. The end of a line is also a
statement separator, but a semicolon at the end of a line that is not part of a
comment is considered as a single separator. Essentially, a null statement is a
legal Fortran statement. The following statements show use of the semicolon:

! The semicolon is a statement separator.

X = 1.0; Y = 2.0

! However, the semicolon below, at the end of a
! line, is not treated as a separator and is

! ignored.

Z = 3.0;

! Also, consecutive semicolons are treated as one

! semicolon, even if blanks intervene.
Z = 3.0; ; W = 4.0

56 007–3692–004

Language Elements and Source Form [3]

A label can appear before a statement, provided that it is not part of another
statement, but it must be separated from the statement by at least one blank.
Examples:

10 FORMAT(10X,2I5) ! 10 is a label

IF (X == 0.0) 200 Y = SQRT(X) ! Label 200 is

! not allowed.

Any printable character can be used in character literal constants and character
string edit descriptors.

The CF90 and MIPSpro 7 Fortran 90 compilers support only the ASCII character
set. The Fortran Language Reference Manual, Volume 3, describes the ASCII
character set.

3.3.1.1 The Ampersand (&) As a Continuation Symbol

The ampersand (&) is used as the continuation symbol in free source form. If it
is the last nonblank character in a line after any comments are deleted and it is
not in a character context, the statement is continued on the next line that does
not begin with a comment. If the first nonblank character on the continuing line
is an ampersand, the statement continues after the ampersand; otherwise, the
statement continues with the first position of the line. The ampersand or
ampersands used as the continuation symbols are not considered part of the
statement. For example, the following statement takes two lines (one
continuation line) because it is too long to fit on one line:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS ** 2 * &

(DENSITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

The leading blanks on the continued line are included in the statement and are
allowed in this case because they are between lexical tokens.

The double ampersand convention must be used to continue a name, a character
constant, or a lexical token consisting of more than 1 character split across lines.
The following statement is the same statement as in the previous example:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS ** 2 * (DEN&

&SITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

However, splitting names across lines makes the code difficult to read and is
not recommended.

Ampersands can be included in a character constant. Only the last ampersand
on the line is the continuation symbol, as illustrated in the following example:

007–3692–004 57

Fortran Language Reference Manual, Volume 1

LAWYERS = "Jones & Clay & &

&Davis"

The value of this constant is Jones & Clay & Davis. The first two
ampersands are in a character context; they are part of the value of the
character string.

END statements cannot be continued.

3.3.1.2 Blanks As Separators

Blanks in free source form cannot appear within tokens, such as names or
symbols consisting of more than 1 character, but blanks can be used freely in
format specifications. For example, blanks cannot appear between the
characters of multicharacter operators such as ** and .NE.. Format
specifications are an exception because blanks can appear within edit
descriptors such as BN, SS, or TR.

The CF90 and MIPSpro 7 Fortran 90 compilers treat tabs and single blanks as
equivalent in free source form, except in character literal strings.

ANSI/ISO: The Fortran standard does not allow tabs in Fortran source files.

A blank must be used to separate a statement keyword, name, constant, or label
from an adjacent name, constant, or label. For example, the blanks in the
following statements are required:

INTEGER SIZE

PRINT 10,N

DO I=1,N

Adjacent keywords require a blank separator in some cases (for example, CASE
DEFAULT). In other cases, two adjacent keywords can be written either with or
without intervening blanks (for example, BLOCK DATA).

Blank separators are optional in the following keywords:

• BLOCK DATA

• DOUBLE PRECISION

• ELSE IF

• END BLOCK DATA

• END DO

58 007–3692–004

Language Elements and Source Form [3]

• END FILE

• END IF

• END INTERFACE

• END MODULE

• END PROGRAM

• END SELECT

• END SUBROUTINE

• END TYPE

• END WHERE

• GO TO

• IN OUT

• SELECT CASE

Blank separators are mandatory in the following keywords:

• CASE DEFAULT

• DO WHILE

• IMPLICIT type_spec

• IMPLICIT NONE

• INTERFACE ASSIGNMENT

• INTERFACE OPERATOR

• MODULE PROCEDURE

• RECURSIVE FUNCTION

• RECURSIVE SUBROUTINE

• RECURSIVE type_spec

• type_spec FUNCTION

• type_spec RECURSIVE

007–3692–004 59

Fortran Language Reference Manual, Volume 1

Blanks are not mandatory in all cases, but blank separators between statement
keywords make the source text more readable and clarify the statements.
Generally, if common rules of English text are followed, everything will be
correct. For example, blank separators in the following statements make them
quite readable, and the blanks in DOUBLE PRECISION and END FUNCTION are
optional:

RECURSIVE FUNCTION F(X)
DOUBLE PRECISION X

END FUNCTION F

3.3.1.3 Sample Program, Free Source Form

The following is a sample program in free source form. Note that the numbers
and the line at the top are not part of the program; the vertical bars to the left
of the program are also not part of the program. These graphics are included to
show the columns this program uses in free source form.

123456789.......

|PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

| ! Print arrays X and Y
| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &

| F10.5)

| . . .

|END

3.3.2 Fixed Source Form

Fixed source form is position oriented on a line using the historical Fortran
conventions for position that were used on punched cards.

Note: The Fortran standard has declared fixed source form to be obsolescent.
The preferred alternative is free source form.

By default, statements or parts of statements must be written between positions
7 and 72, inclusive. The f90(1) command line includes options that allow you
to specify different line lengths. For information on specifying different line
lengths, see the CF90 Commands and Directives Reference Manual, or the MIPSpro
7 Fortran 90 Commands and Directives Reference Manual.

60 007–3692–004

Language Elements and Source Form [3]

Regardless of the command line specification, character positions 1 through 6
are reserved for special purposes.

ANSI/ISO: The Fortran standard does not allow a compiler to recognize
characters beyond column 72.

Blanks are not significant in fixed source form except in a character context. For
example, the following two statements are identical:

D O 10 I = 1, L O O P E N D

DO 10 I = 1, LOOPEND

A C or * in position 1 identifies a comment. In this case, the entire line is a
comment and is called a comment line. A ! in any position except position 6
and not in a character context indicates that a comment follows to the end of
the line. Comments are not significant.

A line with only blank characters or with no characters is treated as a comment
line.

Multiple statements on a line are separated by one or more semicolons.
Semicolons can occur at the end of a line, and these are ignored.

Any character (including ! and ;) other than blank or 0 in position 6 indicates
that the line is a continuation of the previous line. Such a line is called a
continuation line. The text on the continuation line begins in position 7. There
can be no more than 99 continuation lines for one statement in fixed source
form. The first line of a continued statement is called the initial line.

ANSI/ISO: If you are using fixed source form, the Fortran standard allows
no more than 19 continuation lines within a statement.

Statement labels can appear only in positions 1 through 5. A label can appear
only on the initial line of a continued statement. Thus, positions 1 through 5 of
continuation lines must contain blanks.

The CF90 and MIPSpro 7 Fortran 90 compilers allow you to continue an END
statement, as follows:

E
&N

&D

ANSI/ISO: The Fortran standard states that an END statement must not be
continued.

007–3692–004 61

Fortran Language Reference Manual, Volume 1

The characters END can appear as the only characters on the initial line of a
statement, as follows:

END

&FILE(10)

ANSI/ISO: The Fortran standard states that END cannot be an initial line of a
statement other than an END statement.

Any character from the CF90 and MIPSpro 7 Fortran 90 character set (including
graphic and control characters) can be used in character literal constants and
character edit descriptors. Although the Fortran standard permits a processor to
limit the use of control characters (such as the newline) to such character
contexts, the compilers impose no such limitation.

3.3.2.1 Tab Character

You can substitute the tab character for spaces at the beginning of a line, but it
is not actually converted to spaces. The compiler uses the tab as follows:

• If a tab is the first character on a line, the next character determines how the
line is interpreted. A nonzero digit indicates a continuation line. Otherwise,
this line is the initial line of a statement.

• A statement label, if present, must precede the first tab.

• The compiler treats the tab character in a statement the same way it treats a
blank character.

A tab character is not converted to spaces, so the exact visual placement of
tabbed statements depends on the utility you use to edit or display text.

Note: A tab counts as 1 character even though it may expand to more than
one space in the listing or editor. Thus, statements that include tabs may
appear to have data beyond column 72 (or 80) in the editor or listing.

3.3.2.2 Sample Program, Fixed Source Form

The following is a sample program in fixed source form. Note that the numbers
and the line at the top are not part of the program; the vertical bars to the left
of the program are also not part of the program. These graphics are included to
show the columns this program uses in fixed source form.

123456789.....

62 007–3692–004

Language Elements and Source Form [3]

| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)
|C Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4,

| 1 F10.5)

| . . .

| END

3.4 Portable Source Form

For portability in many cases, such as an included file, it is desirable to use a
form of the source code that is valid and equivalent for either free source form
or fixed source form. Such a source form can be written by obeying the
following rules and restrictions:

• Limit labels to positions 1 through 5, and statements to positions 7 through
72. These are the limits required in fixed source form.

• Treat blanks as significant. Because blanks are ignored in fixed source form,
using the rules of free source form will not impact the requirements of fixed
source form.

• Use the exclamation mark (!) for a comment, but do not place it in position
6, which indicates continuation in fixed source form. Do not use the C or *
forms for a comment.

• To continue statements, use the ampersand in both position 73 of the line to
be continued and in position 6 of the continuation. Positions 74 to 80 must
remain blank or contain only a comment. Positions 1 through 5 must be
blank. The first ampersand continues the line after position 72 in free source
form and is ignored in fixed source form. The second ampersand indicates
continuation in fixed source form and in free source form indicates that the
text for the continuation of the previous line begins after the ampersand.

• The CF90 and MIPSpro 7 Fortran 90 compilers allow you to switch between
fixed and free source forms within a file or include file by using the FIXED
and FREE compiler directives. All compiler directives should begin in
column 1. For more information on compiler directives, see the CF90
Commands and Directives Reference Manual, or the MIPSpro 7 Fortran 90
Commands and Directives Reference Manual.

007–3692–004 63

Fortran Language Reference Manual, Volume 1

3.4.1 Sample Program, Use with Either Source Form

The following is a sample program that is acceptable in either fixed or free
source form. Note that the numbers and the line at the top are not part of the
program; the vertical bars to the left of the program are also not part of the
program. These graphics are included to show the columns this program uses
in fixed source form.

123456789..... 73

---.....----

| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)
|! Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &

| & F10.5)

| . . .
| END

3.5 The INCLUDE Line

Source text can be imported from another file and included within a program
file during processing. An INCLUDE line consists of the keyword INCLUDE
followed by a character literal constant. The following is an example of an
INCLUDE line:

INCLUDE ’MY_COMMON_BLOCKS’

The specified text is substituted for the INCLUDE line during compilation and is
treated as if it were part of the original program source text. The CF90 and
MIPSpro 7 Fortran 90 compilers allow you to specify search path names on the
f90(1) command line for locating files to be included. For more information on
INCLUDE lines, see the CF90 Commands and Directives Reference Manual, or the
MIPSpro 7 Fortran 90 Commands and Directives Reference Manual.

The INCLUDE line provides a convenient way to include source text that is the
same in several program units. For example, the specification of interface
blocks or objects in common blocks may constitute a file that is referenced in
the INCLUDE line.

The format for an INCLUDE line is as follows:

INCLUDE character_literal_constant

64 007–3692–004

Language Elements and Source Form [3]

The character_literal_constant used cannot have a kind parameter that is a named
constant.

The INCLUDE line is a directive (but not a compiler directive) to the compiler; it
is not a Fortran statement.

The INCLUDE line is placed where the included text is to appear in the program.

The INCLUDE line must appear on one line with no other text except possibly a
trailing comment. There can be no statement label.

The INCLUDE lines can be nested. That is, a second INCLUDE line may appear
within the text to be included. The Fortran standard does not specify the
permitted level of nesting, and the CF90 and MIPSpro 7 Fortran 90 compilers
impose no limit. The text inclusion cannot be recursive at any level. For
example, included text A cannot include text B, which includes text A.

A file intended to be referenced in an INCLUDE line cannot begin or end with
an incomplete statement.

An example of a program unit with an INCLUDE line follows:

PROGRAM MATH

REAL, DIMENSION(10,5,79) :: X, ZT! Some arithmetic

INCLUDE ’FOURIER’! More arithmetic

. . .
END

The source text in the file FOURIER in effect replaces the INCLUDE line.

3.6 Low-level Syntax

The basic lexical elements of the language consist of the classes character, name,
constant, intrinsic_operator, defined_operator, and label. These are defined as
follows:

defined_operator is defined_unary_op

or defined_binary_op

or extended_intrinsic_op

defined_unary_op is . letter [letter]

007–3692–004 65

Fortran Language Reference Manual, Volume 1

defined_binary_op is . letter [letter]

extended_intrinsic_op is intrinsic_operator

label is digit [digit [digit [digit [digit]]]]

66 007–3692–004

Data Types [4]

Fortran was designed to give scientists and engineers an easy way to solve
problems by using computers. Statements could be presented that looked like
formulas or English sentences. For example, the following statement might be
performing typical numeric calculations:

X = B + A * C

As another example, the following statement could specify that a certain action
is to be taken based on a logical decision:

IF (LIMIT_RESULTS .AND. X .GT. XMAX) X = XMAX

And the following statement could be used to communicate the results of a
calculation to a scientist or engineer in a meaningful way:

PRINT *, "CONVERGENCE REACHED"

Each of these statements performs a task that uses a different type of data:

Task Data Type

Calculating typical numeric results Numeric data

Making decisions Logical data

Explaining Character data

The preceding list shows the commonly needed data types, and the Fortran
standard provides for them.

The CF90 and MIPSpro 7 Fortran 90 compilers support additional data types.
This preserves compatibility with other vendor’s systems. These additional
types are as follows:

• Cray pointer

• Cray character pointer (implementation deferred on IRIX systems)

• Boolean (or typeless)

ANSI/ISO: The Fortran standard does not specify Cray pointer, Cray
character pointer, or Boolean data types.

Anything provided by the language is intrinsic to the language. Types that are
not intrinsic to the language can be specified by a programmer. The

007–3692–004 67

Fortran Language Reference Manual, Volume 1

programmer-specified types are built of (or derived from) the intrinsic types and
thus are called derived types. The Fortran data types are categorized in Figure 4.

Intrinsic types

Numeric types

Derived types

Nonnumeric types

CharacterLogicalComplexInteger Real Cray pointer and
Cray character pointer

Boolean
constants

a10630

Fortran data types

Figure 4. Fortran data types

As the following list shows, the type of the data determines the operations that
can be performed on it:

Data Type Operations

Real, complex, integer,
Boolean

Addition, subtraction, multiplication, division,
exponentiation, negation, comparison, masking
expressions

Logical Negation, conjunction, disjunction, and
equivalence

Character Concatenation, comparison

User defined User defined

68 007–3692–004

Data Types [4]

Cray pointer, Cray
character pointer

Addition, subtraction, and LOC()function

The intrinsic types have the appropriate built-in (intrinsic) operations. You
must define the operations performed on user-defined data types.

This chapter explains the Fortran data types. It describes each of the intrinsic
types, and it explains derived types and the facilities provided by the language
that allow you to define types and declare and manipulate objects of these
types in ways that are analogous to the ways in which objects of the intrinsic
types can be manipulated.

4.1 Building the Data Environment for a Problem Solution

When envisioning a computer solution to a problem you focus on the operations
that must be performed and the order in which they must be performed. It is a
good idea, however, to consider the variables you will need before you
determine all the computational steps that are required. The variables that are
chosen, together with their types and attributes, sometimes determine the course
of computation, particularly when variables of user-defined type are involved.

4.1.1 Choosing the Type and Other Attributes of a Variable

There are several decisions to make about a variable in a program. If the
variable is of an intrinsic type, the intended use of the variable will readily
determine its type, making this an easy decision. While type is the most
important attribute of a variable, there are other attributes. Certainly it is
necessary to decide very early whether the variable is to be a single data object
(a scalar) or an array. Fortran provides many new facilities for manipulating
arrays as objects, making it possible to specify computations as straightforward
array operations.

Because Fortran provides allocatable arrays and pointers, it is not necessary to
decide at the outset how big an array must be. In fact, determining sizes can be
postponed until the finished program is executed, when sizes can be read in as
input or calculated. Setting aside space for an array can be deferred until the
appropriate size needed for a particular calculation is known.

Another decision that can be made about a variable is its accessibility. Control
of accessibility is a feature available in modules. If the variable is needed only
within the module, then it can be kept private or hidden from other program
units. This prevents it from being corrupted inadvertently. This feature can be
used to make Fortran programs safer and more reliable.

007–3692–004 69

Fortran Language Reference Manual, Volume 1

In addition to type, dimensionality, dynamic determination, and accessibility,
there are other attributes that can be applied to data objects. The attributes that
are permitted depend on where and how the object is to be used; for example,
there are a number of attributes that can be applied only to subprogram
arguments. Chapter 5, page 117, describes all of the attributes of data objects.

4.1.2 Choosing the Kind of a Variable of Intrinsic Type

After the type of a variable is decided, you may need to consider which kind of
the type to use. Each of the intrinsic types can be specified with a kind parameter
that selects a processor-dependent representation of objects of that type and
kind. If no kind parameter is specified, the default kind is assumed.

Note: Depending on your hardware platform, the CF90 and MIPSpro 7
Fortran 90 compilers may support more than one kind for each data type.

Fortran requires a processor to support at least two kinds for the real and
complex types and at least one kind for the other three intrinsic types. The
CF90 and MIPSpro 7 Fortran 90 compilers support several kinds of real,
complex, logical, and integer data types.

The Fortran data types are as follows:

• Real. Programs with REAL and DOUBLE PRECISION declarations are not
numerically portable across machine architectures with different word sizes.
The CF90 and MIPSpro 7 Fortran 90 compilers choose a representation for
the real type that is efficient on the target machine. For example, a
representation that fits into 32 bits is used on machines with 32-bit words,
and a representation that fits into 64 bits is used on machines with 64-bit
words.

A kind parameter gives you access to and control over the use of different
machine representations of real values in order to make a program more
portable. For example, a kind parameter in a REAL declaration can specify a
required minimum precision, as follows:

REAL(KIND=SELECTED_REAL_KIND(10,50)) :: REAL_VALUE

When a program is run on a 32-bit machine, it uses two words to contain
variable REAL_VALUE. When the same program (without any changes) is
run on a 64-bit machine, one word is used to contain variable REAL_VALUE.

Fortran treats double-precision real as a separate kind of real. There are two
ways to declare real variables: one is with a REAL statement specifying a
nondefault kind and the other is with a DOUBLE PRECISION statement.

70 007–3692–004

Data Types [4]

• Complex. Fortran uses a COMPLEX attribute with a nondefault kind
parameter to specify double-precision complex.

• Character. The Fortran standard’s kind type parameter values allow a single
character to occupy more than one byte. The CF90 and MIPSpro 7 Fortran
90 compilers support only the ASCII character set, though, so they have no
nondefault character kind.

• Integer. Alternative representations of integer data provide an integer kind
with a very large range. The CF90 and MIPSpro 7 Fortran 90 compilers
support several integer kinds.

4.1.3 Choosing to Define a Type for a Variable

Sometimes it is easier to think about an essential element of a problem as
several pieces of related data, not necessarily all of the same type. Arrays can
be used to collect homogeneous data (all of the same type) into a single
variable. A structure is a collection of nonhomogeneous data in a single
variable. To declare a structure, it is first necessary to define a type that has
components of the desired types. The structure is then declared as an object of
this user-defined (or derived) type.

An example of objects declared to be of user-defined type was given in Section
2.3.1, page 16. It is repeated here. First a type, named PATIENT, is defined.
Next, two structures, JOHN_JONES and SALLY_SMITH, are declared:

TYPE PATIENT
INTEGER PULSE_RATE

REAL TEMPERATURE

CHARACTER *300 PROGNOSIS

END TYPE PATIENT

TYPE(PATIENT) JOHN_JONES, SALLY_SMITH

Type PATIENT has three components, each of a different intrinsic type (integer,
real, and character). In practice, a type of this nature probably would have even
more components, such as the patient’s name and address, insurance company,
room number in the hospital, and so on. For purposes of illustration, three
components are sufficient. JOHN_JONES and SALLY_SMITH are structures (or
variables) of type PATIENT. A type definition indicates names, types, and
attributes for its components; it does not declare any variables that have these
components. Just as with the intrinsic types, a type declaration is needed to
declare variables of this type. Because there is a type definition, though, any
number of structures can be created that have the components specified in the

007–3692–004 71

Fortran Language Reference Manual, Volume 1

type definition for PATIENT; subprogram arguments and function results can
be of type PATIENT; there can be arrays of type PATIENT; and operations can
be defined that manipulate objects of type PATIENT. Thus, the derived-type
definition can be used merely as a way to specify a pattern for a particular
collection of related but nonhomogeneous data; but, because the pattern is
specified by a type definition, a number of other capabilities are available.

4.2 What Is Meant by type in Fortran

Knowing exactly what is meant by type in Fortran becomes more important
now that you can define types in addition to the intrinsic types. A data type
provides a means to categorize data and determine which operations can be
applied to the data to get desired results. The following exist for each data type:

• A name

• A set of values

• A set of operations

• A form for constants of the intrinsic types and constructors for derived types

4.2.1 Data Type Names

Each of the intrinsic types has a name supplied by the standard. The names of
derived types must be supplied in type definitions. The name of the type is
used to declare entities of the type unless the programmer chooses to let the
processor determine the type of an entity implicitly by the first character of its
name. Chapter 5, page 117, describes declarations and implicit typing.

4.2.2 Data Type Values

Each type has a set of valid values. The logical type has only two values: true
and false. The integer type has a set of integral numeric values that can be
positive, negative, or zero. For complex or derived types, the set of valid values
is the set of all combinations of the values of the individual components.

The kind of an intrinsic type determines the set of valid values for that type
and kind. For example, there is more than one integer data type: the default
type and shorter integer types. The shorter integer types have values that are a
subset of the default integer values. The kind of a type is referred to as a kind
parameter or kind type parameter of the type. The character data type has a length
parameter as well as a kind parameter. The length parameter specifies the

72 007–3692–004

Data Types [4]

number of characters in an object, and this determines the valid values for a
particular character object. Derived types do not have parameters, even though
their components may.

4.2.3 Data Type Operations

For each of the intrinsic data types, a set of operations with corresponding
operators is provided by the language. These are described in Chapter 7, page
215.

You can specify new operators and define operations for the new operators.
The form of a new operator is an alphabetic name of your choice delimited by
periods. These new operators are analogous to intrinsic operators such as .GT.,
.AND., and .NEQV.. For example, you might specify and define the operations
.PLUS., .REMAINDER., and .REVERSE.. In defining the operation, the types
of allowable operands must be specified. Such new operations can apply to
objects of intrinsic type and in these cases extend the set of operations for the
type. You would more frequently be defining operations for objects of derived
type.

You cannot redefine an intrinsic operation, but you can define meanings for
intrinsic operator symbols when at least one operand is not of an intrinsic type
or for intrinsic operands for which the intrinsic operation does not apply. For
example, consider the expression A + B. If both A and B are of numeric type,
the operation is defined intrinsically and cannot be redefined. However, if either
A or B is of derived type or nonnumeric type, the plus operation between A and
B is not defined intrinsically, and you can provide a meaning for the operation.
New operations are defined by functions with the OPERATOR interface. These
are described in the Fortran Language Reference Manual, Volume 2.

Assignment is defined intrinsically for each intrinsic and derived type.
Structure assignment is component-by-component intrinsic or pointer
assignment, though this can be replaced by a defined assignment. No other
intrinsically defined assignment, including array assignment, can be redefined.
Beyond this, any assignment between objects of different type may be defined
with the ASSIGNMENT interface as described in the Fortran Language Reference
Manual, Volume 2.

4.2.4 Forms for Constants and Constructors

The language specifies the syntactic forms for literal constants of each of the
intrinsic types. Syntactic mechanisms (called derived-type constructors) specify

007–3692–004 73

Fortran Language Reference Manual, Volume 1

derived-type values. As shown in Figure 5, page 74, the form indicates both the
type and a particular member of the set of valid values for the type.

Syntax
1
103.1 or 1.031E2
(1.0, 1.0)
.TRUE.
"Hello"

Type
integer
real
complex
logical
character

Value
1
103.1
1 + i
true
Hello

70

99.7

Recovering

patientPATIENT (70, 99.7, "Recovering")

a10631

Figure 5. Forms of constants and constructors

If a constant is not of default kind, some indication of its kind must be included
in its syntactic form. This form is the default literal constant separated from the
kind value by an underscore. Kind specifications follow integer, real, and logical
values. Kinds are known to the CF90 and MIPSpro 7 Fortran 90 compilers as
integer values, but if a program is to be portable, the actual numbers should not
be used because the kind values depend on the processor. Instead, a kind value
should be assigned to a named constant, and you should use the name.

In the following examples, DOUBLE and HIGH are named constants for kind
values:

Real 1.3141592653589_DOUBLE

Complex (1.75963_HIGH, -2.0)

The kind of a complex constant is determined by the kind of its parts. Section
4.3.3.3, page 85, describes the form for complex literal constants.

4.3 Intrinsic Data Types

The default real kind, default integer kind, and default logical kind are all
stored in one storage unit. Default complex (which is really two default reals)
and double-precision real data is stored in two storage units.

74 007–3692–004

Data Types [4]

Note: This chapter describes each of the intrinsic types. The descriptions
include a simple statement form to show how objects of these types can be
declared. These simple forms are not complete. If they are used to construct
statements, the statements will be correct, but other variations are permitted.
Section 5.1, page 119, contains the complete formats. The kind parameter that
appears in the formats is limited to a scalar integer initialization expression,
which is described in Section 7.2.9.2, page 258.

4.3.1 Integer Type

The name of the integer type is INTEGER. The following format shows how
integer objects can be declared:

INTEGER [([KIND =] kind_param)] [[, attribute_list] ::]
entity_list

Examples:

INTEGER :: X

INTEGER :: COUNT, K, TEMPORARY_COUNT

INTEGER(SHORT) :: PARTS

INTEGER, DIMENSION(0:9) :: SELECTORS, IX

4.3.1.1 Values

The integer data type has values that represent a subset of the mathematical
integers. The intrinsic inquiry function RANGE provides the decimal exponent
range for integers of the kind of its argument. Only one kind of integer is
required by the standard, but the CF90 and MIPSpro 7 Fortran 90 compilers
support several. Values that overflow in storage may be truncated.

If kind_param is specified, it must have one of the following values: 1, 2, 4, or 8.
The default kind_param is specific to your hardware platform. These values are
shown in Table 2, page 76. Options to the f90(1) command allow you to change
the size and storage aspects of integer values. See the CF90 Commands and
Directives Reference Manual, or the MIPSpro 7 Fortran 90 Commands and Directives
Reference Manual, for information on changing default kind parameter values.

007–3692–004 75

Fortran Language Reference Manual, Volume 1

Table 2. Integer kind values

kind_param Value range Size / Storage Operating system

1 –27 ≤ n < 27 8 bits / 8 bits IRIX

1 –27 ≤ n < 27 8 bits / 64 bits UNICOS

1 –27 ≤ n < 27 8 bits / 32 bits UNICOS/mk

2 –215 ≤ n < 215 16 bits / 16 bits IRIX

2 –215 ≤ n < 215 16 bits / 64 bits UNICOS

2 –215 ≤ n < 215 16 bits / 32 bits UNICOS/mk

4 (default) –231 ≤ n < 231 32 bits / 32 bits IRIX

4 –231 ≤ n < 231 32 bits / 64 bits UNICOS

4 –231 ≤ n < 231 32 bits / 32 bits UNICOS/mk

8 –263 ≤ n < 263 64 bits / 64 bits IRIX

8 –263 ≤ n < 263 64 bits / 64 bits UNICOS

8 (default)1 –245 ≤ n < 245 46 bits / 64 bits UNICOS (fast integer operations, systems
other than CRAY T90 IEEE systems)

8 (default)1 –250 ≤ n < 250 51 bits / 64 bits UNICOS (fast integer operations, CRAY T90
IEEE systems)

8 (default) –263 ≤ n < 263 64 bits / 64 bits UNICOS/mk
1 When declared as INTEGER, with no KIND= or * specification.

In Table 2, the Size information refers to the size according to the integer model
defined on the MODELS(3I) man page.

Table 3, page 76, shows power-of-10 values that approximate the power-of-2
values shown in Table 2.

Table 3. Exponent equivalents

2n 10k

27 102

215 104

76 007–3692–004

Data Types [4]

2n 10k

231 109

245 1013

252 1015

263 1018

The RANGE(3I) intrinsic function returns the decimal exponent range of a given
number. For more information on this intrinsic function, see the RANGE(3I) man
page.

The KIND(3I) intrinsic function can be used to determine the kind parameter of
its integer argument.

The SELECTED_INT_KIND(3I) intrinsic function returns the integer kind
parameter required to represent as many decimal digits as are specified by the
function argument. If there is no such integer type available on your system, –1
is returned.

The following statement declares I and J to be integer objects with a
representation method that permits at least five decimal digits; that is, it
includes all integers between –105 and 105:

INTEGER (SELECTED_INT_KIND (5)) I, J

4.3.1.2 Operators

There are both binary and unary intrinsic operators for the integer type. Binary
operators have two operands and unary operators have only one. The binary
arithmetic operations for the integer type are: +, -, *, /, and **. The unary
arithmetic operations are + and -. The relational operations (all binary) are:
.LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and >. The result of an
intrinsic arithmetic operation on integer operands is an integer entity. The result
of an intrinsic relational operation is a logical entity of default logical kind.

4.3.1.3 Format for Constant Values

An integer constant is a string of decimal digits, optionally preceded by a sign,
and optionally followed by an underscore and a kind parameter. An integer
constant that must not have a kind type parameter is defined as follows:

007–3692–004 77

Fortran Language Reference Manual, Volume 1

signed_digit_string is [sign] digit_string

digit_string is digit [digit]...

The format of a signed integer literal constant (which may have a kind type
parameter) is defined as follows:

signed_int_literal_constant is [sign] int_literal_constant

int_literal_constant is digit_string [_ kind_param]

kind_param is digit_string

or scalar_int_constant_name

sign is +

or -

The signed integer literal constant often takes the following format:

[sign] digit_string [_ kind_param]

In the following examples, assume that LONG and SHORT are named constants
with values that are valid integer kind parameters:

42
9999999999999999999999_LONG

+64

10000000

-258_SHORT

Integer constants are interpreted as decimal values. However, in a DATA
statement, it is possible to initialize an object with a value that is presented as if
it had a nondecimal base. The allowed forms are unsigned binary, octal, and
hexadecimal constants, and are defined as follows:

boz_literal_constant is binary_constant

or octal_constant

or hex_constant

78 007–3692–004

Data Types [4]

The CF90 and MIPSpro 7 Fortran 90 compilers support binary, octal, and
hexadecimal constants in other contexts; for more information on these forms
see Section 4.3.6, page 90.

A binary_constant is defined as follows:

binary_constant is B ’ digit [digit] ... ’

or B " digit [digit] ... "

You must specify 0 or 1 for digit.

An octal_constant is defined as follows:

octal_constant is O ’ digit [digit] ... ’

or O " digit [digit] ... "

You must specify a value from 0 through 7 for digit.

A hex_constant is defined as follows:

hex_constant is Z’ hex_digit [hex_digit] ...’

or Z " hex_digit [hex_digit] ... "

hex_digit is digit

or A

or B

or C

or D

or E

or F

You must specify a value from 0 through 9 or one of the letters A through F
(representing the decimal values 10 through 15) for digit. The CF90 and MIPSpro

007–3692–004 79

Fortran Language Reference Manual, Volume 1

7 Fortran 90 compilers support lowercase letters, so the hexadecimal digits A
through F can be represented by their lowercase equivalents, a through f.

In these constants, the binary, octal, and hexadecimal digits are interpreted
according to their respective number systems. For example, all of the following
have a value equal to the decimal value 10:

B"1010"

O’12’

Z"A"

4.3.2 Real Type

The name of the real data type is REAL. The name DOUBLE PRECISION is used
for another kind of the real type. You can use one of the following formats to
declare objects of real type:

REAL [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

DOUBLE PRECISION [[, attribute_list] ::] entity_list

Examples:

REAL X, Y

REAL(KIND = HIGH), SAVE :: XY(10, 10)

REAL, POINTER :: A, B, C
DOUBLE PRECISION DD, DXY, D

4.3.2.1 Values

The values of the real data type approximate the mathematical real numbers.
The set of values varies from processor to processor. The Fortran standard
requires a processor to support at least two approximation methods for the real
type. The CF90 and MIPSpro 7 Fortran 90 compilers provide three, so there are
three kind values for the real type.

If kind_param is specified, it must have one of the following values: 4, 8, or 16.
The default kind_param and the values associated with the kind values are
specific to your hardware platform. These values are shown in Table 4, page 81.
Options to the f90(1) command allow you to change the size and storage
aspects of real values. See the CF90 Commands and Directives Reference Manual,
or the MIPSpro 7 Fortran 90 Commands and Directives Reference Manual, for
information on changing default kind parameter values.

80 007–3692–004

Data Types [4]

Table 4. Real and complex kind values

kind_param Value range
Size and
Storage Operating system

4 (default) 2 –125 ≤ n < 2 128 32 bits IRIX

4 2 –1021 ≤ n < 2 1024 64 bits UNICOS (CRAY T90 IEEE systems)

4 2 –8188 ≤ n <2 8189 64 bits UNICOS (systems other than CRAY T90 IEEE
systems)

4 2 –125 ≤ n < 2 128 32 bits UNICOS/mk

8 2 –1021 ≤ n < 2 1024 64 bits IRIX

8 (default) 2 –8188 ≤ n < 2 8189 64 bits UNICOS (systems other than CRAY T90 IEEE
systems)

8 (default) 2 –1021 ≤ n < 2 1024 64 bits UNICOS/mk, UNICOS (CRAY T90 IEEE
systems)

16 2 –967 ≤ n < 2 1023 128 bits IRIX

16 2 –16381 ≤ n < 2 16384 128 bits UNICOS (CRAY T90 IEEE systems)

16 2 –8188 ≤ n < 2 8189 128 bits UNICOS (systems other than CRAY T90 IEEE
systems)

Table 5, page 81, shows power-of-10 values that approximate some of the
power-of-2 values shown in Table 4.

Table 5. Exponent equivalents

2n 10k

2128 1038

21024 10308

28189 102466

216384 104932

The KIND(3I) intrinsic function can be used to determine the kind parameter of
its real argument. The intrinsic functions PRECISION(3I) and RANGE(3I) return
the decimal precision and exponent range of the approximation method used
for the kind of the argument. The intrinsic function SELECTED_REAL_KIND(3I)

007–3692–004 81

Fortran Language Reference Manual, Volume 1

returns the kind value required to represent as many digits of precision as
specified by the first argument and the decimal range specified by the optional
second argument.

The following statement declares X to have at least five decimal digits of
precision and no specified minimum range:

REAL(SELECTED_REAL_KIND(5)) X

The following statement declares Y to have at least eight decimal digits of
precision and a range that includes values between 10-70 and 1070 in magnitude:

REAL(SELECTED_REAL_KIND(8, 70)) Y

4.3.2.2 Operators

The intrinsic binary arithmetic operators for the real type are: +, -, *, /, and
**. The intrinsic unary arithmetic operators are: + and -. The relational
operators are: .LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., >,
.LG., and <>. The result of an intrinsic arithmetic operation on real operands
is a real entity. If one of the operands of an arithmetic operation is an integer
entity, the result is still a real entity. The result of an intrinsic relational
operation is a logical entity of default logical kind.

ANSI/ISO: The Fortran standard does not describe the .LG. or <> operators.

4.3.2.3 Forms for Constants

A real constant is distinguished from an integer constant by containing either a
decimal point, an exponent, or both. The format for a signed_real_literal_constant
is defined as follows:

signed_real_literal_constant is [sign] real_literal_constant

real_literal_constant is significand exponent_letter exponent [_kind_param]

or digit_string exponent_letter exponent [_kind_param]

significand is digit_string . [digit_string]

or . digit_string

exponent_letter is E

82 007–3692–004

Data Types [4]

or D

exponent is signed_digit_string

A signed real literal constant can take one of the following forms:

[sign] digit_string exponent_letter exponent [_kind_param]

[sign] whole_part . [fraction_part] [exponent_letter exponent]
[_kind_param]

[sign] . fraction_part [exponent_letter exponent] [_kind_param]

For whole_part, specify a digit_string. For fraction_part, specify a digit_string. For
exponent, specify a signed_digit_string.

If both a kind_param and an exponent_letter are present, the exponent_letter must
be E or e. If a kind_param is present, the real constant is of that kind; if a D or d
exponent letter is present, the constant is of type double-precision real;
otherwise, the constant is of type default real.

On UNICOS and UNICOS/mk systems, if you have disabled double-precision
arithmetic by specifying -d p on the f90(1) command, D is treated as E.

A real constant can have more decimal digits than will be used to approximate
the real number.

Examples of signed real literal constants are as follows:

-14.78
+1.6E3

2.1

-16.E4_HIGH

0.45_LOW

.123

3E4
2.718281828459045D0

In the preceding example, the parameters HIGH and LOW must have been
defined, and their values must be kind parameters for the real data type
permitted by the CF90 and MIPSpro 7 Fortran 90 compilers.

007–3692–004 83

Fortran Language Reference Manual, Volume 1

If a real literal constant has a kind parameter, it takes precedence over an
exponent letter. Consider the following specification:

1.6E4_HIGH

The example’s code fragment will be represented by the method specified for
HIGH, even though 1.6E4 would be represented by a different method.

4.3.3 Complex Type

The name of the complex type is COMPLEX. A format for declaring objects of
this type is as follows:

COMPLEX [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

Examples:

COMPLEX CC, DD

COMPLEX(KIND = single), POINTER :: CTEMP(:)

4.3.3.1 Values

The complex data type has values that approximate the mathematical complex
numbers. A complex value is a pair of real values; the first is called the real part
and the second is called the imaginary part. Each approximation method used to
represent data entities of type real is available for entities of type complex with
the same kind parameter values. Therefore, there are three approximation
methods for complex.

When a complex entity is declared with a kind specification, this kind is used
for both parts of the complex entity. There is no special double-precision
complex declaration, as such. If no kind parameter is specified, the entity is of
type default complex which corresponds to default real. The
SELECTED_REAL_KIND(3I) intrinsic function may be used in a declaration of a
complex object.

If kind_param is specified, it must have one of the following values: 4, 8, or 16.
The default kind is specific to your hardware platform. The values, the ranges
(for both the real and imaginary portions of the number), and the defaults
supported are the same as those for type real, and these values are shown in
Table 4, page 81. See the CF90 Commands and Directives Reference Manual, or
MIPSpro 7 Fortran 90 Commands and Directives Reference Manual, for information
on changing default kind parameter values.

84 007–3692–004

Data Types [4]

For information on power-of–10 and power-of–2 equivalent values, see Table 5,
page 81.

In the following statement, CX must be represented by an approximation
method with at least 8 decimal digits of precision and at least a decimal
exponent range between 10-70 and 1070 in magnitude for the real and imaginary
parts:

COMPLEX(SELECTED_REAL_KIND(8, 70)) CX

4.3.3.2 Operators

The intrinsic binary arithmetic operators for the complex type are: +, -, *, /,
and **. The intrinsic unary arithmetic operators are: + and -. The intrinsic
relational operators are: .EQ., ==, .NE., and /=. The arithmetic operators
specify complex arithmetic; the relationals compare operands to produce default
logical results. The result of an intrinsic arithmetic operation on complex
operands is a complex entity. If one of the operands is an integer or real entity,
the result is still a complex entity.

4.3.3.3 Form for Constants

A complex literal constant is written as two literal constants that are real or
integer, separated by a comma, and enclosed in parentheses, as follows:

(real_part , imag_part)

The CF90 and MIPSpro 7 Fortran 90 compilers allow the real and imaginary
portions of a complex literal constant to be named constants.

ANSI/ISO: The Fortran standard does not specify the use of named constants
as the real or imaginary components of a complex literal constant.

The format for a complex_literal_constant is defined as follows:

complex_literal_constant is (real_part , imag_part)

real_part is signed_int_literal_constant

or signed_real_literal_constant

007–3692–004 85

Fortran Language Reference Manual, Volume 1

imag_part is signed_int_literal_constant

or signed_real_literal_constant

Examples:

(3.0, -3.0)
(6, -7.6E9)

(3.0_HIGH, 1.6E9_LOW)

A real kind parameter can be specified for either one of the two real values. If a
different real kind parameter is given for each of the two real values, the
complex value will have the kind parameter that specifies the greater precision,
unless the kind parameters specify the same precision. If both parts are integer,
each part is converted to default real. If one part is of integer type and the
other is of real type, the integer value is converted to the kind and type of the
real value.

4.3.4 Logical Type

The name of the logical type is LOGICAL. A format for declaring objects to be of
this type is as follows:

LOGICAL [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

Examples:

LOGICAL IR, XT
LOGICAL(KIND = SMALL), SAVE :: XMASK (3000)

4.3.4.1 Values

The logical data type has two values that represent true and false. The Fortran
standard requires processors to provide one logical kind, but the CF90 and
MIPSpro 7 Fortran 90 compilers provide other kinds. Each logical item occupies
one word. (An object of default logical type must occupy the same unit of
storage as an object of default real type.) The KIND(3I) intrinsic function can be
used to determine the kind number of its argument. There is no intrinsic
function analogous to the functions SELECTED_INT_KIND(3I) and
SELECTED_REAL_KIND(3I).

If specifying a kind_param, it must have one of the following values: 1, 2, 4, or
8. The default kind_param and the values associated with the kind values are

86 007–3692–004

Data Types [4]

specific to your hardware platform. These values are shown in Table 6. See the
CF90 Commands and Directives Reference Manual, or MIPSpro 7 Fortran 90
Commands and Directives Reference Manual, for information on changing default
kind parameter values.

Table 6. Logical kind values

kind_param Size / Storage Operating system

1 8 bits / 8 bits IRIX

1 8 bits / 64 bits UNICOS

1 8 bits / 32 bits UNICOS/mk

2 16 bits / 16 bits IRIX

2 16 bits / 64 bits UNICOS

2 16 bits / 32 bits UNICOS/mk

4 (default) 32 bits / 32 bits IRIX

4 32 bits / 64 bits UNICOS

4 32 bits / 32 bits UNICOS/mk

8 64 bits / 64 bits IRIX

8 (default) 64 bits / 64 bits UNICOS, UNICOS/mk

4.3.4.2 Operators

The intrinsic binary operators for the logical type are as follows: conjunction
(.AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical
nonequivalence (.NEQV.). The intrinsic unary operation is negation (.NOT.).
The exclusive disjunction operator for the CF90 and MIPSpro 7 Fortran 90
compilers is .XOR.

ANSI/ISO: The Fortran standard does not specify the .XOR. exclusive
disjunction operator.

007–3692–004 87

Fortran Language Reference Manual, Volume 1

4.3.4.3 Form for Constants

There are only two logical literal constants. They can be followed by an
underscore and a kind parameter. The format for a logical_literal_constant is
defined as follows:

logical_literal_constant is .TRUE. [_kind_param]

or .FALSE. [_ kind_param]

If a kind_param is not specified, the type of the constant is default logical.
Examples are as follows:

FALSE.

TRUE._WORD

If .T. and .F. are not defined operators in a compilation unit, the CF90 and
MIPSpro 7 Fortran 90 compilers recognize .T. as an abbreviation for .TRUE.
and .F. for .FALSE.

ANSI/ISO: The Fortran standard does not specify the use of .T. or .F..

4.3.5 Character Type

The name of the character type is CHARACTER. Declarations for objects of this
type may take several different forms. One of these forms is as follows:

CHARACTER [([LEN =] length_parameter [, [KIND =] kind_param])]
[[, attribute_list] ::] entity_list

The length_parameter can be an asterisk (*) or a specification expression, which
is described in Section 7.2.9.3, page 260. The various forms of the CHARACTER
statement are described in Section 5.1.6, page 126, but the following examples
use the form specified previously:

CHARACTER(80) LINE

CHARACTER(*) GREETING

CHARACTER(LEN = 30, KIND = ASCII), DIMENSION(10) :: C1

88 007–3692–004

Data Types [4]

4.3.5.1 Values

The character data type has a set of values composed of character strings. A
character string is a sequence of characters, numbered from left to right 1, 2, ...,
n, where n is the length of (number of characters in) the string. Both length and
kind are type parameters for the character type. If no length parameter is
specified, the length is 1. A character string can have length 0. The maximum
length permitted for character strings is 2, 097, 151. Although the Fortran
standard permits a processor to provide more than one character kind, the CF90
and MIPSpro 7 Fortran 90 compilers support only one, ASCII. Thus, the CF90
and MIPSpro 7 Fortran 90 compilers do not support any nondefault character
kinds. If kind_param is specified, it must have the value 1.

The Fortran standard specifies only a partial collating sequence because it is
concerned only that operations that compare character objects containing only
characters from the Fortran character set will be portable across different
processors. Because the CF90 and MIPSpro 7 Fortran 90 compilers support the
ASCII character set, they follow the Fortran standard’s collating requirements.
The intrinsic functions ACHAR(3I) and IACHAR(3I) convert between numeric
values and ASCII characters. The intrinsic functions LGT(3I), LGE(3I), LLE(3I),
and LLT(3I) provide comparisons between strings based on the ASCII collating
sequence.

4.3.5.2 Operators

The binary operation concatenation (//) is the only intrinsic operation on
character entities and has a character entity as a result. A number of intrinsic
functions are provided that perform character operations. These are described
in the Fortran Language Reference Manual, Volume 2. The intrinsic relational
operators on objects of type character are .LT., <, .LE., <=, .EQ., ==, .NE.,
/=, .GE., >=, .GT., and >. The relational operations can be used to compare
character entities, but because of possible processor-dependent collating
sequences, care must be taken if the results are intended to be portable.

4.3.5.3 Form for Constants

A character literal constant is written as a sequence of characters, enclosed
either by apostrophes or quotation marks. The format for a char_literal_constant
is as follows:

007–3692–004 89

Fortran Language Reference Manual, Volume 1

char_literal_constant is [kind_param _] ’ [ASCII_char] ... ’

or [kind_param _] " [ASCII_char] ... "

Note that, unlike the other intrinsic types, the kind parameter for the character
literal constant precedes the constant.

If the string delimiter character (either an apostrophe or a quotation mark) is
required as part of the constant, two consecutive such characters with no
intervening blanks serve to represent a single such character in the string, for
example:

"DON’T"

’DON’’T’

These two examples have the value DON’T. A zero-length character constant
can be written as "" or ’’. The quotation marks or apostrophes are
immediately adjacent to each other.

4.3.6 Boolean Type (EXTENSION)

A Boolean constant represents the literal constent of a single storage unit. There
are no Boolean variables or arrays, and there is no Boolean type statement.

ANSI/ISO: The Fortran standard does not describe Boolean values.

Boolean type differs, depending on your platform, as follows:

• On UNICOS and UNICOS/mk systems, a bitwise logical (masking)
expression has a Boolean result, with each of its bits representing the result
of one or more logical operations on the corresponding bit of the
expression’s operands.

When an operand of a binary arithmetic or relational operator is Boolean,
the operation is performed as if the Boolean operand has the same type as
the other operand (that is, no data conversion occurs). If both operands are
of type Boolean, the operation is performed as if they were of type integer.

No user-specified or intrinsic functions generate a Boolean result, but some
nonstandard intrinsic functions generate Boolean results.

• On IRIX systems, a bitwise logical expression has an integer result, with
each of its bits representing the result of one or more logical operations on
the corresponding bit of the expression’s operands. When an operand of a
binary arithmetic or relational operator is Boolean, the operation is

90 007–3692–004

Data Types [4]

performed as if the Boolean operand is of type integer. If both operands are
of type Boolean, the operation is performed as if they were of type integer.

No user-specified or intrinsic functions generate Boolean results.

Boolean and logical types differ in the following ways:

• Variables, arrays, and functions can be of logical type, and there is a
LOGICAL type statement.

• A logical variable or constant represents only one value of true or false
(rather than separate bit values), and a logical expression yields one true or
false value.

• Logical entities are invalid in arithmetic, relational, or bitwise logical
expressions, while Boolean entities are valid. (Note, however, that results of
relational expressions are logical.)

A Boolean constant can be written as an octal, hexadecimal, or Hollerith value.
There is no form for binary digits. Boolean constants can represent up to 256
bits of data. This size limit corresponds to the size of the largest numeric type,
COMPLEX(KIND = 16). The ultimate size and make-up of the constant is
dependent on its context. The constant is truncated or padded to match the size
of the type implied by its context. These forms use the notation described in the
following sections.

4.3.6.1 Octal Form

The octal form contains 1 to 86 digits (0 through 7) in either of the following
two forms:

• It can be a string of digits followed by the letter B or b, as in 177B.

• It can be a quoted string of digits followed by the letter O or o, as in "177"O.

• It can be a quoted string of digits preceded by the letter O or o, as in O"177".

The 86 digits in a Boolean value correspond to the internal representation of
four 64-bit words or eight 32-bit words. If all 86 digits are specified, the
leftmost octal digit must be only 0 or 1, representing the content of the leftmost
bit position (bit 0 in the first word) of the value. Each successive octal digit
specifies the contents of the next three bit positions. The last octal digit specifies
the content of the rightmost three bit positions, which are bits 61, 62, and 63 of
the last (fourth or eighth) word. Blanks are ignored in fixed source form.
Blanks are significant in free source form for the dddB syntax. That is, 1 777B

007–3692–004 91

Fortran Language Reference Manual, Volume 1

would not be treated as a single value in free source form, and it would most
likely result in a syntax error message.

A Boolean value represented by fewer than 86 octal digits is right justified; that
is, it represents the rightmost bits of 256 bits.

When context is taken into account, the value is truncated on the left if it is too
large for the context type. It is padded with 0 on the left if it is too small for the
context type.

Note: For a literal constant, the letter B indicates octal digits; in an I/O
format specification, the B descriptor indicates binary digits.

Examples:

Boolean constant Internal representation (octal) for a 64-bit word

0B 0000000000000000000000

77740B 0000000000000000077740

Statement example:

I = 1357B

4.3.6.2 Hexadecimal Form

The hexadecimal form consists of 1 to 64 hexadecimal digits consisting of 0
through 9, A through F, or a through f in either of the following two forms:

• It can be specified as the letter X or x followed by a string of hexadecimal
digits enclosed in apostrophes or quotations marks, as in X"FFF".

• It can be specified with the X or x trailing the quoted string of digits, as in
"FFF"X.

When a Boolean value contains 64 hexadecimal digits, the binary equivalents
correspond to the content of each bit position in 4 64-bit words or eight 32-bit
words.

A Boolean value represented by fewer than 64 hexadecimal digits is right
justified; that is, it represents the rightmost bits of 256 bits.

An optional unary minus sign (-) is allowed within the quoted string.

When context is taken into account, the value is truncated on the left if it is too
large for the context type. It is padded with 0 on the left if it is too small for the
context type.

92 007–3692–004

Data Types [4]

Examples:

Boolean constant Internal representation (octal) for a 64-bit word

X’ABE’ 0000000000000000005276

X"-340" 1777777777777777776300

X’1 2 3’ 0000000000000000000443

X’FFFFFFFFFFFFFFFF’ 1777777777777777777777

Statement examples:

J = X"28FF"

K = X’-5A’

4.3.6.3 Hollerith Form

A Hollerith constant is type Boolean. When a character constant is used in a
bitwise logical expression, the expression is evaluated as if the value were
Hollerith. A Hollerith constant can have a maximum of 32 characters.

When context is taken into account, the truncation or padding depends on the
type of Hollerith syntax used.

For Hollerith using the letter H, the value is truncated on the right if it is too
large for the context type. It is padded with blanks on the right if it is too small
for the context type.

For Hollerith using the letter L, the value is truncated on the right if it is too
large for the context type. It is padded with 0 on the right if it is too small for
the context type.

For Hollerith using the letter R, the value is truncated on the left if it is too
large for the context type. It is padded with 0 on the left if it is too small for the
context type.

4.3.7 Cray Pointer Type (EXTENSION)

A Cray pointer is a variable whose value is the address of another entity, which
is called a pointee. The Cray pointer type statement declares both the pointer
and its pointee.

ANSI/ISO: The Fortran standard does not describe Cray pointer values.

Cray pointers are declared as follows:

007–3692–004 93

Fortran Language Reference Manual, Volume 1

POINTER (pointer, pointee)

Fortran pointers are declared as follows:

POINTER :: [object_name]

The two kinds of pointers cannot be mixed.

You can use pointers to access user-managed storage by dynamically
associating variables and arrays to particular locations in a block of storage.
Cray pointers do not provide convenient manipulation of linked lists because,
for optimization purposes, it is assumed that no two pointers have the same
value. Cray pointers also allow the accessing of absolute memory locations.

The range of a Cray pointer or Cray character pointer depends on the size of
memory for the machine in use.

Restrictions on Cray pointers are as follows:

• A Cray pointer cannot be pointed to by another Cray or Fortran pointer;
that is, a Cray pointer cannot also be a pointee or a target.

• A Cray pointer cannot appear in a PARAMETER statement or in a type
declaration statement that includes the PARAMETER attribute.

• A Cray pointer variable cannot be declared to be of any other data type.

• A Cray character pointer cannot appear in a DATA statement. For more
information on Cray character pointers, see Section 4.3.8, page 97.

• An array of Cray pointers is not allowed.

• A Cray pointer cannot be a component of a structure.

Restrictions on Cray pointees are as follows:

• A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON,
AUTOMATIC, or PARAMETER statement.

• A Cray pointee cannot be a dummy argument; that is, it cannot appear in a
FUNCTION, SUBROUTINE, or ENTRY statement.

• A function value cannot be a Cray pointee.

• A Cray pointee cannot be a structure component.

94 007–3692–004

Data Types [4]

Note: Cray pointees can be of type character, but their Cray pointers are
different from other Cray pointers; the two kinds cannot be mixed in the
same expression.

The Cray pointer is a variable of type Cray pointer and can appear in a COMMON
list or be a dummy argument in a subprogram.

The Cray pointee does not have an address until the value of the Cray pointer
is defined; the pointee is stored starting at the location specified by the pointer.
Any change in the value of a Cray pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Cray pointers can be assigned values in the following ways:

• A Cray pointer can be set as an absolute address. For example:

Q = 0

• Cray pointers can have integer expressions added to or subtracted from
them and can be assigned to or from integer variables. For example:

P = Q + 100

However, Cray pointers are not integers. For example, assigning a Cray pointer
to a real variable is not allowed.

The (nonstandard) LOC(3I) intrinsic function generates the address of a variable
and can be used to define a Cray pointer, as follows:

P = LOC(X)

The following example uses Cray pointers in the ways just described:

SUBROUTINE SUB(N)

COMMON POOL(100000), WORDS(1000)

INTEGER BLK(128), WORD64

REAL A(1000), B(N), C(100000-N-1000)
POINTER(PBLK,BLK), (IA,A), (IB,B), &

(IC,C), (ADDRESS,WORD64)

ADDRESS = LOC(WORDS) + 64

PBLK = LOC(WORDS)

IA = LOC(POOL)
IB = IA + 1000

IC = IB + N

BLK is an array that is another name for the first 128 words of array WORDS. A is
an array of length 1000; it is another name for the first 1000 elements of POOL. B

007–3692–004 95

Fortran Language Reference Manual, Volume 1

follows A and is of length N. C follows B. A, B, and C are associated with POOL.
On UNICOS and UNICOS/mk systems, WORD64 is the same as BLK(65)
because BLK(1) is at the initial address of WORDS. On IRIX systems, WORD64 is
the same as BLK(17) because Cray pointers are byte addresses and the
INTEGER elements of array BLK are each 4 bytes long.

If a pointee is of a noncharacter data type that is one machine word or longer,
the address stored in a pointer is a word address. If the pointee is of type
character or of a data type that is less than one word, the address is a byte
address. The following example also uses Cray pointers:

PROGRAM TEST

REAL X(10), Y(10), A(10)

POINTER (P,X), (Q,Y)

P = LOC(A(1))

Q = LOC(A(2))

I = P

J = Q

IF ((J-I) .EQ. (Q-P)) THEN
PRINT *, ’Not a byte addressable machine’

ELSE

PRINT *, ’Byte addressable machine’

ENDIF

END

On a CRAY C90 system, this prints the following:

Not a byte addressable machine

On a CRAY T3E system, this prints the following:

Byte addressable machine

For purposes of optimization, the compiler assumes that the storage of a
pointee is never overlaid on the storage of another variable; that is, it assumes
that a pointee is not associated with another variable or array. This kind of
association occurs when a Cray pointer has two pointees, or when two Cray
pointers are given the same value. Although these practices are sometimes used
deliberately (such as for equivalencing arrays), results can differ depending on
whether optimization is turned on or off. You are responsible for preventing
such association. For example:

96 007–3692–004

Data Types [4]

POINTER(P,B), (P,C)

REAL X, B, C
P = LOC(X)

B = 1.0

C = 2.0

PRINT *, B

Because B and C have the same pointer, the assignment of 2.0 to C gives the
same value to B; therefore, B will print as 2.0 even though it was assigned 1.0.

As with a variable in common storage, a pointee, pointer, or argument to a
LOC(3I) intrinsic function is stored in memory before a call to an external
procedure and is read out of memory at its next reference. The variable is also
stored before a RETURN or END statement of a subprogram.

4.3.8 Cray Character Pointer Type (EXTENSION) (UNICOS and UNICOS/mk Systems Only)

If a pointee is declared as character type, its Cray pointer is a Cray character
pointer.

Restrictions for Cray pointers also apply to Cray character pointers. In addition,
the following restrictions apply:

• When included in an I/O statement iolist, a Cray character pointer is treated
as an integer.

• If the length of the pointee is explicitly declared (that is, not of an assumed
length), any reference to that pointee uses the explicitly declared length.

• If a pointee is declared with an assumed length (that is, as
CHARACTER *(*)), the length of the pointee comes from the associated
Cray character pointer.

• A Cray character pointer can be used in a relational operation only with
another Cray character pointer. Such an operation applies only to the
character address and bit offset; the length field is not used.

For more information on the Cray character pointer see Section 5.1.9, page 131.

4.4 Derived Types

Unlike the intrinsic types that are defined by the language, you must define
derived types. These types have the same utility as the intrinsic types. For

007–3692–004 97

Fortran Language Reference Manual, Volume 1

example, variables of these types can be declared, passed as procedure
arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to
declare objects of the type. A derived-type definition also specifies components
of the type, of which there must be at least one. A component can be of
intrinsic or derived type; if it is of derived type, it can be resolved into
components, called ultimate components. These ultimate components are of
intrinsic type and can be pointers.

The direct components of a derived type are as follows:

• The components of the type

• For any nonpointer component that is of a derived type, the direct
components of that derived type.

If the type definition appears in a module, the type definition may contain the
keywords PUBLIC or PRIVATE. Generally, entities specified in a module can be
kept private to the module and will not be available outside the module. This is
true of data objects, module subprograms, and type definitions. By default,
entities specified in a module are available to any program unit that accesses
the module; that is, they have PUBLIC accessibility by default. This default can
be changed by inserting a PRIVATE statement ahead of the specifications and
definitions in the module. Individual entities can be specified to have either the
PUBLIC or PRIVATE attribute regardless of the default. For a type definition,
this can be accomplished by a PUBLIC or PRIVATE specifier in the TYPE
statement of the type definition. The keyword PRIVATE can be used in two
ways in type definitions in a module. One way makes the entire type private to
the module; the other way allows the type name to be known outside the
module, but not the names or attributes of its components. A separate
PRIVATE statement that mentions the type name or a PRIVATE specifier in the
TYPE statement of the type definition provides the first of these. An optional
PRIVATE statement inside the type definition provides the second. See Section
4.4.1, page 99, for examples of a private type and a public type with private
components.

A type definition can contain a SEQUENCE statement. The Fortran standard
allows a processor to rearrange the components of a derived type in any
convenient order. However, if a SEQUENCE statement appears inside the type
definition, the type is considered to be a sequence type. In this case, the processor
must allocate storage for the components in the declared order so that structures
declared to be of the derived type can appear in COMMON and EQUIVALENCE
statements. See Section 4.4.1, page 99, for an example of a sequence type.

98 007–3692–004

Data Types [4]

Default initialization is specified for a component of an object of derived type
when initialization appears in the component declaration. The object is
initialized as specified in the derived type definition even if the definition is
private or inaccessible. Default initialization applies to dummy arguments with
INTENT (OUT) and function return values. Unlike explicit initialization,
default initialization does not imply that the object has the SAVE attribute. If a
component has default initialization, it is not required that default initialization
be specified for other components of the derived type.

A derived type has a set of values that is every combination of the permitted
values for the components of the type. The language provides a syntax for
constants of the intrinsic types; it provides a somewhat similar mechanism,
called a structure constructor, to specify a value for a derived type. A constructor
can be used in the following places:

• In PARAMETER statements and in type declaration statements to define
derived-type named constants

• In DATA statements to specify initial values

• As structure-valued operands in expressions

User-defined functions and subroutines must be used to define operations on
entities of derived type. Thus, the four properties of the intrinsic types
(possession of a name, a set of values, a set of operations, and a syntactic
mechanism to specify constant values) are also provided for derived types.

4.4.1 Derived Type Definition

A derived type definition gives a derived type a name and specifies the types
and attributes of its components. A derived type definition begins with a TYPE
statement, ends with an END TYPE statement, and has component declarations
in between. The following example defines type PATIENT:

TYPE PATIENT

INTEGER PULSE_RATE

REAL TEMPERATURE
CHARACTER*(300) PROGNOSIS

END TYPE PATIENT

The format of a derived_type_def is as follows:

007–3692–004 99

Fortran Language Reference Manual, Volume 1

TYPE [[, access_spec] ::] type_name
[private_sequence_stmt] ...
component_def_stmt
[component_def_stmt] ...
END TYPE [type_name]

A derived-type definition is defined as follows:

derived_type_def is derived_type_stmt
[private_sequence_stmt] ...

component_def_stmt
[component_def_stmt] ...

end_type_stmt

private_sequence_stmt is PRIVATE

or SEQUENCE

derived_type_stmt is TYPE [[, access_spec] ::] type_name

end_type_stmt is END TYPE [type_name]

component_def_stmt is type_spec [[, component_attr_spec_list] ::] component_decl_list

component_attr_spec is POINTER

or DIMENSION (component_array_spec)

component_array_spec is explicit_shape_spec_list

or deferred_shape_spec_list

component_decl is component_name [(component_array_spec)] [* char_length]
[component_initialization]

For access_spec, specify either PRIVATE or PUBLIC.

The component_array_spec must be a deferred-shape array if the POINTER
attribute is present; otherwise, it must be an explicit-shape array.

The name of the derived type must not be the same as any intrinsic type or
locally accessible name in the same class; it has the scope of local names
declared in the scoping unit, which means that it is accessible by use or host
association in other scoping units. A component name has the scope of the type
definition only; another type definition in the same scoping unit may specify

100 007–3692–004

Data Types [4]

the same component name. For more information on local entities and scope,
see the Fortran Language Reference Manual, Volume 2.

If the END TYPE statement is followed by a name, it must be the name
specified in the TYPE statement.

A type can be defined only once within a scoping unit.

A PRIVATE statement must not appear more than once in a type definition.

A SEQUENCE statement must not appear more than once in a type definition

If SEQUENCE is present, all derived types specified as components must also be
sequence types.

The keywords PUBLIC and PRIVATE can appear only if the definition is in the
specification part of a module.

There must be at least one component definition statement in a type definition.

No component attribute can appear more than once in a specified component
definition statement.

A component can be declared to have the same type as the type being defined
only if it has the POINTER attribute.

An array component without the POINTER attribute must be specified with an
explicit-shape specification where the bounds are integer constant expressions.

If a component is of type character with a specified length, the length must be
an integer constant specification expression. If the length is not specified, it is 1.

If component_initialization is specified, a double colon separator (::) must
appear before the component_decl_list.

If => appears in a component_initialization, the POINTER attribute must appear
in the component_attr_spec_list. If = appears in a component_initialization, the
POINTER attribute cannot appear in the component_attr_spec_list.

If initialization_expr appears for a nonpointer component, that component in any
object of the type is initially defined or becomes defined as specified in Fortran
Language Reference Manual, Volume 2 with the value determined from
initialization_expr. The initialization_expr is evaluated in the scoping unit of the
type definition. The evaluation rules are the same as if the component were a
variable=initialization_expr. If component_name is a type for which
default_initialization is specified for a component, the default_initialization
specified by initialization_expr overrides the default initialization specified for

007–3692–004 101

Fortran Language Reference Manual, Volume 1

that component. Explicit initialization in a type declaration statement overrides
default initialization. An object of a type with default initialization must not be
specified in a DATA statement.

The following example shows a derived-type definition with four components
(three integer and one character):

TYPE COLOR

INTEGER :: HUE, SHADE, INTENSITY

CHARACTER(LEN = 30) :: NAME
END TYPE COLOR

The following is a format for declaring variables of derived type:

TYPE (type_name) [[, attribute_list] ::] entity_list

For example, variables of type COLOR can be declared as follows:

TYPE(COLOR) MY_FAVORITE

TYPE(COLOR) RAINBOW(7)

TYPE(COLOR), DIMENSION (100) :: SELECTIONS

The object MY_FAVORITE is a structure. The objects RAINBOW and SELECTIONS
are arrays of structures.

Note that the initial statement of a type definition and the statement used to
declare objects of derived type both begin with the keyword TYPE. The initial
statement of a type definition is called a derived-type statement, and the
statement used to declare objects of derived type is called a TYPE statement.
The type name in a derived-type statement is not enclosed in parentheses,
whereas the type name in a TYPE statement is.

A component of a structure is referenced using a percent sign, as in the
following template:

parent_structure % component_name

Examples:

MY_FAVORITE % HUE
RAINBOW(3) % NAME

The following examples show definitions of derived types. Each example
illustrates a different aspect of a type definition:

102 007–3692–004

Data Types [4]

• A derived type with a component of a different derived type

• A derived type with a pointer component

• A derived type with a pointer component of the type being defined

• A private type definition

• A public type definition with private components

Example 1: A derived type can have a component that is of a different derived
type. Type WEATHER in the following example has a component of type
TEMPERATURES.

TYPE TEMPERATURES

INTEGER :: HIGH, LOW

END TYPE TEMPERATURES

TYPE WEATHER
CHARACTER(LEN = 32) :: CITY

TYPE(TEMPERATURES) :: RANGE(1950:2050)

END TYPE WEATHER

TYPE(WEATHER) WORLDWIDE(200)

WORLDWIDE is an array of type WEATHER. Components of an element of the
array are referenced as follows:

WORLDWIDE(I)%CITY = "Nome"

WORLDWIDE(I)%RANGE(1990)%LOW = -83

Example 2: A derived type can have a component that is a pointer, as follows:

TYPE ABSTRACT
CHARACTER(LEN = 50) TITLE

INTEGER NUM_OF_PAGES

CHARACTER, POINTER :: TEXT(:)

END TYPE ABSTRACT

Any object of type ABSTRACT will have three components: TITLE,
NUM_OF_PAGES, and TEXT. TEXT is a pointer to an array of character strings,
each of which is of length one. The array size is determined during program
execution. The space for the target of TEXT can be allocated, or TEXT can be
pointer-assigned to existing space. For information on the ALLOCATE statement,
see Section 6.5.1, page 206. For information on pointer assignment, see Section
7.5.3, page 285.

007–3692–004 103

Fortran Language Reference Manual, Volume 1

Example 3: A derived type can have a pointer component that is of the type
being defined. This is useful in creating linked lists and trees, as follows:

TYPE LINK

REAL VALUE

TYPE(LINK), POINTER :: PREVIOUS

TYPE(LINK), POINTER :: NEXT

END TYPE LINK

Example 4: A type definition in a module can be kept private to the module, as
follows:

TYPE, PRIVATE :: FILE

INTEGER DRAWER_NO
CHARACTER(LEN = 20) FOLDER_NAME

CHARACTER(LEN = 5) ACCESS_LEVEL

END TYPE FILE

When a module that contains this type definition is accessed by another
scoping unit, the type FILE is not available.

Example 5: A type definition can be public while its components are kept
private, as follows:

MODULE COORDINATES

TYPE POINT

PRIVATE
REAL X, Y

END TYPE POINT

...

END MODULE COORDINATES

In a program unit that uses module COORDINATES, variables of type POINT
can be declared. Values of type POINT can be passed as arguments. If the
program unit is a function, a value of type POINT can be returned as the result.
However, the internal structure of the type (its components) is not available. If
the type POINT is changed to the following, no other program unit that uses
COORDINATES will need to be changed:

TYPE POINT

PRIVATE

REAL RHO, THETA

END TYPE POINT

104 007–3692–004

Data Types [4]

If a subprogram dummy argument is of derived type, the corresponding actual
argument must be of the same type. There are two ways in which objects in
different scoping units can be declared to be of the same type. Two data entities
have the same type if they are declared with reference to the same type
definition. The definition can appear in a module that is accessed or, in the case
of an internal or module procedure, in the host scoping unit.

MODULE SHOP
TYPE COMPONENT

CHARACTER(LEN = 20) NAME

INTEGER CATALOG_NUM

REAL WEIGHT

END TYPE COMPONENT
TYPE(COMPONENT) PARTS(100)

CONTAINS

SUBROUTINE GET_PART(PART, NAME)

TYPE(COMPONENT) PART

CHARACTER(LEN = *) NAME

DO I = 1, 100
IF (NAME .EQ. PARTS(I)%NAME) THEN

PART = PARTS(I)

RETURN

END IF

END DO
PRINT *, "Part not available"

PART%NAME = "none"

PART%CATALOG_NUM = 0

PART%WEIGHT = 0.0

END SUBROUTINE GET_PART
. . .

END MODULE SHOP

PROGRAM BUILD_MACHINE

USE SHOP

TYPE(COMPONENT) MOTOR(20)
TOTAL_WEIGHT = 0.0

CALL GET_PART(MOTOR(1), "VALVE")

IF (MOTOR(1)%WEIGHT .NE. 0) THEN

TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1)%WEIGHT

ELSE
. . .

ENDIF

. . .

007–3692–004 105

Fortran Language Reference Manual, Volume 1

END PROGRAM BUILD_MACHINE

Module procedure GET_PART has access to the type COMPONENT because the
type definition appears in its host. Program BUILD_MACHINE has access to the
type because it uses module SHOP. This allows a variable of the type, such as
MOTOR(1), to be passed as an actual argument.

The other way to declare data entities in different scoping units to be of the
same type is provided for programmers who choose not to use a module.
Instead of a single type definition in the module, a sequence type can be
defined in each of the scoping units that need access to the type. Each of the
type definitions must specify the same name; the SEQUENCE property; have no
private components; and have components that agree in order, name, and
attributes. If this is the case, data entities declared in any of these scoping units
to be of the named type are considered to be of the same type. In the following,
program BUILD_MACHINE is restated to illustrate the differences between the
two ways:

PROGRAM BUILD_MACHINE

TYPE COMPONENT

SEQUENCE
CHARACTER(LEN = 20) NAME

INTEGER CATALOG_NUM

REAL WEIGHT

END TYPE COMPONENT

TYPE(COMPONENT) PARTS, MOTOR(20)
COMMON /WAREHOUSE/ PARTS(100)

TOTAL_WEIGHT = 0.0

CALL GET_PART(MOTOR(1), "VALVE")

IF (MOTOR(1)%WEIGHT .NE. 0) THEN

TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1)%WEIGHT

ELSE
. . .

ENDIF

. . .

END PROGRAM BUILD_MACHINE

SUBROUTINE GET_PART(PART, NAME)
TYPE COMPONENT

SEQUENCE

CHARACTER(LEN = 20) NAME

INTEGER CATALOG_NUM

REAL WEIGHT
END TYPE COMPONENT

TYPE(COMPONENT) PART, PARTS

106 007–3692–004

Data Types [4]

CHARACTER(LEN = *) NAME

COMMON /WAREHOUSE/ PARTS(100)
DO I = 1, 100

IF (NAME .EQ. PARTS(I)%NAME) THEN

PART = PARTS(I)

RETURN

END IF

END DO
PART%NAME = "none"

PART%CATALOG_NUM = 0

PART%WEIGHT = 0.0

PRINT *, "Part not available"

END SUBROUTINE GET_PART
. . .

In this example, type COMPONENT in program BUILD_MACHINE and type
COMPONENT in subroutine GET_PART are the same because they are sequence
types with the same name; have no private components; and have components
that agree in order, name, and attributes. This allows variables of the type to
appear in COMMON and be passed as arguments. Note that this example is less
concise, particularly if more procedures need to access the type definition, and
therefore may be more error prone than the previous example.

Type COMPONENT is a sequence type because its definition contains a SEQUENCE
statement. If all of the ultimate components of a sequence type are of type
default integer, default real, double-precision real, default complex, or default
logical, and are not pointers, the type is a numeric sequence type. An object of
numeric sequence type can be equivalenced to default numeric objects.

If all of the ultimate components of a sequence type are of type character and
are not pointers, the type is a character sequence type. An object of character
sequence type may be equivalenced to character objects.

A pointer component of a derived type can have as its target an object of that
derived type. The type definition can specify that in objects declared to be of
this type, such a pointer is default initialized to disassociated. In the following
example, type NODE is created and is used to construct linked lists of objects of
type NODE:

TYPE NODE

INTEGER :: VALUE
TYPE (NODE), POINTER :: NEXT_NODE => NULL ()

END TYPE

007–3692–004 107

Fortran Language Reference Manual, Volume 1

Initialization need not be specified for each component of a derived type. For
example:

TYPE DATE

INTEGER DAY

CHARACTER (LEN = 5) MONTH

INTEGER :: YEAR = 1994 ! PARTIAL DEFAULT INITIALIZATION

END TYPE DATE

In the following example, the default initial value for the YEAR component of
TODAY is overridden by explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

4.4.2 Derived Type Values

The set of values of a derived type consists of all combinations of the
possibilities for component values that are consistent with the components
specified in the type definition.

4.4.3 Derived Type Operations

Any operation involving a derived-type entity must be defined explicitly by a
function with an OPERATOR interface. Assignment, other than the intrinsic
assignment provided for entities of the same derived type, must be defined by a
subroutine with an ASSIGNMENT interface. See the Fortran Language Reference
Manual, Volume 2, for a description.

Suppose it is desirable to determine the number of words and lines in a section
of text. The information is available for each paragraph. A type named
PARAGRAPH is defined as follows:

TYPE PARAGRAPH

INTEGER NUM_WORDS, NUM_LINES

CHARACTER(LEN = 30) SUBJECT

END TYPE PARAGRAPH

Suppose that it is now desirable to define an operator for adding the counts
associated with the paragraphs. The following OPERATOR interface is required
for the function that defines the addition operation for objects of type
PARAGRAPH:

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADDP

108 007–3692–004

Data Types [4]

END INTERFACE

The following definition of addition for objects of type PARAGRAPH adds the
words and lines, but it does nothing with the component SUBJECT because that
would have no useful meaning:

TYPE(PARAGRAPH) FUNCTION ADDP(P1, P2)

TYPE(PARAGRAPH) P1, P2
INTENT(IN) P1, P2

ADDP%NUM_WORDS = P1%NUM_WORDS + P2%NUM_WORDS

ADDP%NUM_LINES = P1%NUM_LINES + P2%NUM_LINES

END FUNCTION ADDP

If the following variables were declared, the expression BIRDS+BEES would be
defined and could be evaluated in the module subprogram as well as any
program unit accessing the module:

TYPE(PARAGRAPH) BIRDS, BEES

4.4.4 Syntax for Specifying Derived-type Constant Expressions

When a derived type is defined, a structure constructor for that type is defined
automatically. The structure constructor is used to specify values of the type. It
specifies a sequence of values, one for each of the components of the type. A
structure constructor whose values are all constant expressions is a derived-type
constant expression. (This is why a derived-type value is formed by a
constructor. There is no such thing as a structure constant; there are only
structure constructors, some of which may be constant expressions.) A named
constant of user-defined type can be assigned such a value. Structure
constructors are described in Section 4.5, page 109.

A component of a derived type can be an array. In this case a mechanism called
an array constructor is used to specify that component of the type. Array
constructors are described in Section 4.6, page 112, and a general discussion of
arrays can be found in Section 6.4, page 195.

4.5 Structure Constructors

A structure constructor is a mechanism that is used to specify a value of a derived
type by specifying a sequence of values for the components of the type. If a
component is of derived type, an embedded structure constructor is required to
specify the value of that component. If a component is an array, an embedded
array constructor is required to specify the values for that component.

007–3692–004 109

Fortran Language Reference Manual, Volume 1

A structure constructor is the name of the type followed by a sequence of
component values in parentheses. For example, a value of type COLOR (from
Section 4.4.1, page 99) can be constructed with the following structure
constructor:

COLOR(I, J, K, "MAGENTA")

For information on derived types, see Section 4.4.1, page 99.

The format for a structure_constructor is defined as follows:

structure_constructor is type_name (expr_list)

There must be a value in the expression list for each component.

The expressions must agree in number and order with the components of the
derived type. Values may be converted (in the same way they would be for an
assignment statement) to agree in type, kind, length, and, in some cases, rank,
with the components. The conversions permitted are those for intrinsic
assignment, in which the component is the variable on the left and the
expression is the one given in the structure constructor corresponding to the
component. Rank must be conformable according to the rules of assignment
conformance. That is, the shapes must conform or the expression can be a
scalar broadcast to an array component.

If a component is an explicit-shape array (that is, a nonpointer array), the array
constructor for it in the expression list must be the same shape as the
component.

If a component is a pointer, the value for it in the expression list must evaluate
to an allowable target for the pointer. A constant is not an allowable target.

A structure constructor must not appear before that type is defined.

The structure constructor for a private type or a public type with private
components is not available outside the module in which the type is defined.

If the values in a structure constructor are constants, you can use the structure
constructor to specify a named constant, as in the following example:

PARAMETER(TEAL = COLOR(14, 7, 3, "TEAL"))
TYPE(COMPONENT), PARAMETER :: NO_PART = COMPONENT("none", 0, 0.0))

110 007–3692–004

Data Types [4]

Following are several examples of structure constructors for types with
somewhat different components:

• A type with a component that is of derived type

• A type with an array component

• A type with a pointer component

Example 1: A structure constructor for a type that has a derived type as a
component must provide a value for each of the components. A component
may be of derived type, in which case a structure constructor is required for the
component. In the following example, type RING has a component of type
STONE:

TYPE STONE
REAL CARETS

INTEGER SHAPE

CHARACTER(30) NAME

END TYPE STONE

TYPE RING
REAL EST_VALUE

CHARACTER(30) INSURER

TYPE (STONE) JEWEL

END TYPE RING

If OVAL is a named integer constant, an example of a structure constructor for a
value of type RING is as follows:

RING (5000.00, "Lloyds", STONE(2.5, OVAL, "emerald"))

Example 2: If a type is specified with an array component, the value that
corresponds to the array component in the expression list of the structure
constructor must conform with the shape of the array component. For example,
type ORCHARD has an array component as follows:

TYPE ORCHARD

INTEGER AGE, NUM_TREES

CHARACTER(LEN = 20) VARIETY(10)

END TYPE

Assume the following declarations:

CHARACTER(LEN = 20) CATALOG(16, 12)

PARAMETER(LEMON = 3)

007–3692–004 111

Fortran Language Reference Manual, Volume 1

A structure constructor for a value of type ORCHARD is as follows:

ORCHARD (5, ROWS * NUM_PER_ROW, CATALOG(LEMON, 1:10))

Example 3: When a component of the type is a pointer, the corresponding
structure constructor expression must evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement. Assume
that the variable SYNOPSIS is declared as follows:

CHARACTER, TARGET :: SYNOPSIS(4000)

The following value of the type ABSTRACT (from Section 4.4.1, page 99) can
then be constructed:

ABSTRACT("War and Peace", 1025, SYNOPSIS)

A constant expression cannot be constructed for a type with a pointer
component because a constant is not an allowable target in a pointer
assignment statement.

4.6 Array Constructors

An array constructor is used to specify the value of an array. More precisely, an
array constructor is a mechanism that is used to specify a sequence of scalar
values that is interpreted as a rank-one array. Syntactically, it is a sequence of
scalar values and implied-DO specifications enclosed in parentheses and slashes.
As with structures, there is no such thing as an array constant. There are only
array constructors, some of which may be constant expressions, as follows:

REAL VECTOR_X(3), VECTOR_Y(2), RESULT(100)

. . .

RESULT(1:8) = (/ 1.3, 5.6, VECTOR_X, 2.35, VECTOR_Y /)

The value of the first eight elements of RESULT is constructed from the values
of VECTOR_X and VECTOR_Y and three real constants in the specified order. If a
rank-two or greater array appears in the value list, the values of its elements are
taken in array element order. If it is necessary to construct an array of rank
greater than one, the RESHAPE(3I) intrinsic function can be applied to an array
constructor.

The format for an array_constructor is as follows:

112 007–3692–004

Data Types [4]

array_constructor is (/ ac_value_list /)

ac_value is expr

or ac_implied_do

ac_implied_do is (ac_value_list, ac_implied_do_control)

ac_implied_do_control is ac_do_variable = scalar_int_expr, scalar_int_expr [, scalar_int_expr]

ac_do_variable is scalar_int_variable

Each ac_value expression in the array constructor must have the same type, kind
type, and length parameters. In particular, this means that if each ac_value is a
character literal constant, each constant must have the same length.

The type and type parameters of an array constructor are those of its ac_value
expressions.

If the ac_implied_do yields no values, the array is a rank one, zero-sized array.

An ac_do_variable must be a scalar integer named variable. This variable has the
scope of this ac_implied_do.

If an ac_implied_do is contained within another ac_implied_do, they must not
have the same ac_do_variable.

Three possibilities for an ac_value are as follows:

• It can be a scalar expression, as is each ac_value in the following:

(/ 1.2, 3.5, 1.1 /)

• It can be an array expression, as is each ac_value in the following:

(/ A(I, 1:3), A(I+1, 6:8) /)

• It can be an implied-DO specification, as in the following:

(/ (SQRT(REAL(I)), I = 1, 9) /)

The possibilities can be mixed in a single array constructor, as follows:

(/ 1.2, B(2:6,:), (REAL(I), I = 1, N), 3.5 /)

If an ac_value is an array expression, the values of the elements of the expression
in array element order become the values of the array constructor. For example,
the values that result from the example in possibility 2 are as follows:

(/ A(I,1), A(I,2), A(I,3), A(I+1,6), A(I+1,7), A(I+1,8) /)

007–3692–004 113

Fortran Language Reference Manual, Volume 1

For more information on array element order, see Section 6.4.7, page 203.

If an ac_value is an implied-DO specification, it is expanded to form a sequence
of values under control of the ac_do_variable as in the DO construct. For
example, the values that result from the example in possibility 3 are as follows:

(/1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.645, 2.828, 3.0/)

For more information on the DO construct, see Section 8.5, page 310.

If every expression in an array constructor is a constant expression, the array
constructor is a constant expression as in the example above. Such an array
constructor can be used to assign a value to a named constant, as follows:

REAL X(3), EXTENDED_X(4)

PARAMETER(X = (/ 2.0, 4.0, 6.0 /))
REAL, PARAMETER :: EXTENDED_X = (/ 0.0, X /))

The following are examples of array constructors:

• A constructor for a rank two array

• A constructor for an array of derived type

• A constructor for a value of derived type with an array component

• A constructor for a value of derived type with a rank two array component

Example 1: To create a value for an array of rank greater than one, the
RESHAPE(3I) intrinsic function must be used. With this function, a
one-dimensional array may be reshaped into any allowable array shape.

Y = RESHAPE(SOURCE = (/ 2.0, (/ 4.5, 4.0 /), Z /), &
SHAPE = (/ 3, 2 /))

If Z has the value given in possibility 1, then Y is a 3 by 2 array with the
following elements:

2.0 1.2

4.5 3.5
4.0 1.1

Example 2: It might be necessary to construct an array value of derived type.

TYPE PERSON

INTEGER AGE

CHARACTER(LEN = 40) NAME

END TYPE PERSON

114 007–3692–004

Data Types [4]

TYPE(PERSON) CAR_POOL(3)

CAR_POOL = (/ PERSON(35, "SCHMITT"), &

PERSON(57, "LOPEZ"), PERSON(26, "YUNG") /)

Example 3: When one of the components of a derived type is an array, then an
array constructor must be used in the structure constructor for the derived type.
Suppose that the definition for type COLOR is as follows, which differs slightly
from that stated previously:

TYPE COLOR

INTEGER PROPERTIES(3)
CHARACTER(LEN = 30) NAME

END TYPE COLOR

The following value of the revised type COLOR can be constructed:

COLOR((/ 5, 20, 8 /), "MAGENTA")

Example 4: A derived type might contain an array of rank two or greater, as
follows:

TYPE LINE

REAL COORD(2, 2)

REAL WIDTH

INTEGER PATTERN

END TYPE LINE

The values of COORD are the coordinates x1, y1 and x2, y2 representing the end
points of a line. WIDTH is the line width in centimeters. PATTERN is 1 for a
solid line, 2 for a dashed line, and 3 for a dotted line. An object of type LINE is
declared and given a value as follows:

TYPE(LINE) SLOPE
. . .

SLOPE = LINE(RESHAPE((/ 0.0, 1.0, 0.0, 2.0 /), (/ 2, 2 /)), 0.1, 1)

The RESHAPE(3I) intrinsic function is used to construct a value that represents a
solid line from (0,0) to (1,2) of width 0.1 centimeters.

007–3692–004 115

Declarations [5]

Declarations are used to specify the type and other attributes of program
entities. The attributes that an entity possesses determine how the entity can be
used in a program. Every variable and function has a type, which is the most
important of the attributes; type is discussed in Chapter 4, page 67. However,
type is only one of a number of attributes that an entity may possess. Some
entities, such as subroutines and namelist groups, do not have a type but may
possess other attributes. In addition, there are relationships among objects that
can be specified by EQUIVALENCE, COMMON, and NAMELIST statements.
Declarations are used to specify these attributes and relationships.

Generally, Fortran keywords are used to declare the attributes for an entity. The
following list summarizes these keywords:

Attribute Keyword

Type INTEGER, REAL (and DOUBLE PRECISION),
COMPLEX, LOGICAL, CHARACTER, TYPE
(user-defined name)

Array properties DIMENSION, ALLOCATABLE

Pointer properties POINTER, TARGET

Setting values DATA, PARAMETER

Object accessibility and
use

PUBLIC, PRIVATE, INTENT, OPTIONAL, SAVE,
AUTOMATIC

Procedure properties EXTERNAL, INTRINSIC

The attributes are described and illustrated in turn using either of the two forms
that attribute specifications can take: entity-oriented and attribute-oriented.

For objects that have a type, other attributes can be included in the type
declaration statement. For example:

INTEGER, SAVE :: A, B, C

Collecting the attributes into a single statement is sometimes more convenient
for readers of programs. It eliminates searching through many declaration
statements to locate all attributes of a particular object. Emphasis can be placed
on an object and its attributes (entity-oriented declaration) or on an attribute
and the objects that possess the attribute (attribute-oriented declaration),

007–3692–004 117

Fortran Language Reference Manual, Volume 1

whichever is preferred by a programmer. In both forms, dimensionality can be
specified as an attribute or as an attachment to the object name.

The following are examples of entity-oriented declaration statements:

REAL, DIMENSION(20), SAVE :: X

or

REAL, SAVE :: X(20)

The following are examples of attribute-oriented declaration statements:

REAL X

DIMENSION X(20)

SAVE X

or

REAL X(20)

SAVE X

If attributes are not declared for a data object, defaults apply. Generally, if an
attribute is not specified for an object, it is assumed that the object does not
possess the attribute. However, each data object has a type, and if this is not
explicitly specified, it is assumed from the first letter of its name. You can use
the IMPLICIT statement to specify any intrinsic or user-defined type for an
initial letter or a range of initial letters. The IMPLICIT NONE statement, on the
other hand, removes implicit typing and thus requires explicit type declarations
for every named data object in the scoping unit.

Fortran provides dynamic data objects that can be sized at the time a program
is executed. These include allocatable arrays and objects with the POINTER
attribute. They also include automatic data objects (arrays of any type and
character strings) that are created on entry into a procedure. Only objects
whose size may vary are called automatic.

Other declarations (NAMELIST, EQUIVALENCE, and COMMON) establish
relationships among data objects. The NAMELIST statement is used to name a
collection of objects so that they can be referenced by a single name in an
input/output (I/O) statement. EQUIVALENCE provides references to storage by
more than one name. COMMON provides a mechanism to share storage among
the different units of a program.

118 007–3692–004

Declarations [5]

5.1 Type Declaration Statements

A type declaration type statement begins with the name of the type, optionally
lists other attributes, then ends with a list of variables that possess these
attributes. In addition, a type declaration statement may include an initial value
for a variable. If the PARAMETER attribute is specified on a type statement, the
statement must include the value of the named constant.

The type_declaration_stmt is defined as follows:

type_declaration_stmt is type_spec [[, attr_spec]... ::] entity_decl_list

type_spec is INTEGER kind_selector

EXT or INTEGER* length_value

or REAL kind_selector

EXT or REAL* length_value

or DOUBLE PRECISION

EXT or DOUBLE PRECISION* length_value

or COMPLEX kind_selector

EXT or COMPLEX* length_value

or CHARACTER char_selector

or LOGICAL kind_selector

EXT or LOGICAL* length_value

or TYPE (type_name)

EXT or POINTER (pointer_name, pointee_name [(array_spec)])

[, (pointer_name, pointee_name [(array_spec)])] ...

attr_spec is PARAMETER

or access_spec

or ALLOCATABLE

EXT or AUTOMATIC

or DIMENSION (array_spec)

or EXTERNAL

007–3692–004 119

Fortran Language Reference Manual, Volume 1

or INTENT (intent_spec)

or INTRINSIC

or OPTIONAL

or POINTER

or SAVE

or TARGET

access_spec is PUBLIC

or PRIVATE

entity_decl is object_name [(array_spec)] [* char_length] [initialization]

or function_name [* char_length]

kind_selector is ([KIND=] scalar_int_initialization_expr)

initialization_expr is =intialization_expr

or =>NULL()

The double colon symbol (::) is required in a type declaration statement only
when the type declaration statement contains two or more attributes or when it
contains an initialization_expr.

If => appears in initialization, the object must have the POINTER attribute. If =
appears in initialization, the object cannot have the POINTER attribute.

The type specification can override or confirm the implicit type indicated by the
first letter of the entity name according to the implicit typing rules in effect.

The same attribute can appear more than once in a given type declaration
statement.

ANSI/ISO: The Fortran standard permits an attribute to appear only once in
a given type declaration. The CF90 and MIPSpro 7 Fortran 90 compilers relax
this restriction.

An entity must not be assigned any attribute more than once in a scoping unit.

The value specified in a kind selector must be a kind type parameter allowed
for that type by the CF90 and MIPSpro 7 Fortran 90 compilers.

The character length option can appear only when the type specification is
CHARACTER.

120 007–3692–004

Declarations [5]

An initialization expression must be included if the PARAMETER attribute is
specified.

A function name must be the name of an external function, an intrinsic
function, a function dummy procedure, or a statement function.

An array function result name must be specified as an explicit-shape array
unless it has the POINTER attribute, in which case it must be specified as a
deferred-shape array. For information on array properties, see Section 5.3, page
134.

Other rules and restrictions pertain to particular attributes; these are covered in
the sections describing those attributes. The attributes that can be used with the
attribute being described are also listed. The simple forms that appear in the
following sections to illustrate attribute specification in a type declaration
statement show the attribute being described first in the attribute list, but
attributes can appear in any order. If these simple forms are used to construct
statements, the statements will be correct, but other variations are permitted.

The following examples show type declaration statements:

REAL A(10)
LOGICAL, DIMENSION(5,5) :: MASK_1, MASK_2

COMPLEX :: CUBE_ROOT = (-0.5, 0.867)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(4)

INTEGER(SHORT) :: K ! Range of -9999 to 9999

REAL, ALLOCATABLE :: A1(:, :), A2(:, :, :)
TYPE(PERSON) CHAIRMAN

TYPE(NODE), POINTER :: HEAD_OF_CHAIN, END_OF_CHAIN

REAL, INTENT(IN) :: ARG1

REAL, INTRINSIC :: SIN

REAL, POINTER, DIMENSION (:) :: S => NULL()

5.1.1 Integer

An INTEGER statement declares the names of entities to be of type integer. If a
kind selector is present, it specifies the representation method. For more
information on integer type, see Section 4.3.1, page 75.

The CF90 and MIPSpro 7 Fortran 90 compilers support the following formats
for declaring objects of this type:

007–3692–004 121

Fortran Language Reference Manual, Volume 1

INTEGER [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

INTEGER * length_value [[, attribute_list] ::] entity_list

For kind_param values, see Section 4.3.1, page 75. The length_value values
correspond to the kind_param values and are as follows:

• On UNICOS and UNICOS/mk systems, the values are as follows: 1, 2, 4,
and 8 (default).

• On IRIX systems, the values are as follows: 1, 2, 4 (default), and 8.

The following are examples of entity-oriented declaration statements:

INTEGER, DIMENSION(:), POINTER :: MILES, HOURS
INTEGER(SHORT), POINTER :: RATE, INDEX

The following are examples of attribute-oriented declaration statements:

INTEGER :: MILES, HOURS
INTEGER(SHORT) :: RATE, INDEX

DIMENSION :: MILES(:), HOURS(:)

POINTER :: MILES, HOURS, RATE, INDEX

ANSI/ISO: The Fortran standard does not specify the INTEGER*length_value
syntax. It is recommended that this syntax not be used in any new code.

5.1.2 Real

A REAL statement declares the names of entities to be of type real. If a kind
selector is present, it specifies the representation method. For more information
on real type, see Section 4.3.2, page 80.

The CF90 and MIPSpro 7 Fortran 90 compilers support the following formats
for declaring objects of this type:

REAL [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

REAL * length_value [[, attribute_list] ::] entity_list

For kind_param values, see Section 4.3.2, page 80. The length_value values
correspond to the kind_param values and are as follows:

• On UNICOS systems, the values are as follows: 4, 8 (default), and 16.

122 007–3692–004

Declarations [5]

• On UNICOS/mk systems, the values are as follows: 4 and 8 (default).

• On IRIX systems, the values are as follows: 4 (default), 8, and 16.

The following examples show entity-oriented declaration statements:

REAL(KIND = HIGH), OPTIONAL :: VARIANCE

REAL, SAVE :: A1(10, 10), A2(100, 10, 10)

The following examples show attribute-oriented declaration statements:

REAL(KIND = HIGH) VARIANCE

REAL A1(10, 10), A2(100, 10, 10)
OPTIONAL VARIANCE

SAVE A1, A2

ANSI/ISO: The Fortran standard does not specify the REAL*length_value
syntax. It is recommended that this syntax not be used in any new code.

5.1.3 Double Precision

A DOUBLE PRECISION statement declares the names of entities to be of real
type with a representation method that represents more precision than the
default real representation. The DOUBLE PRECISION statement is outmoded
because REAL with the appropriate kind parameter value is equivalent. A kind
selector is not permitted in the DOUBLE PRECISION statement. For more
information on the real data type, see Section 4.3.2, page 80.

The CF90 and MIPSpro 7 Fortran 90 compilers support the following formats
for declaring objects of this type:

DOUBLE PRECISION [[, attribute_list] ::] entity_list

DOUBLE PRECISION * 16 [[, attribute_list] ::] entity_list

The following examples show entity-oriented declaration statements:

DOUBLE PRECISION, DIMENSION(N,N) :: MATRIX_A, MATRIX_B

DOUBLE PRECISION, POINTER :: C, D, E, F(:, :)

The following examples show attribute-oriented declaration statements:

DOUBLE PRECISION :: MATRIX_A, MATRIX_B, C, D, E, F

DIMENSION :: MATRIX_A(N, N), MATRIX_B(N, N), F(:, :)

POINTER :: C, D, E, F

007–3692–004 123

Fortran Language Reference Manual, Volume 1

If DOUBLE is a named integer constant that has the value of the kind parameter
of the double-precision real type on the target platform, the preceding
entity-oriented declaration statements could be written as follows:

REAL (DOUBLE), DIMENSION (N,N) :: MATRIX_A, MATRIX_B

REAL (DOUBLE), POINTER :: C, D, E, F(:,:)

ANSI/ISO: The Fortran standard does not specify the DOUBLE
PRECISION*16 syntax. It is recommended that this syntax not be used in
any new code.

5.1.4 Complex

A COMPLEX statement declares the names of entities to be of type complex. If a
kind selector is present, it specifies the representation method. For more
information on complex type, see Section 4.3.3, page 84.

The CF90 and MIPSpro 7 Fortran 90 compilers support the following formats
for declaring objects of this type:

COMPLEX [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

COMPLEX * length_value [[, attribute_list] ::] entity_list

For kind_param values, see Section 4.3.3, page 84. The length_value values
correspond to the kind_param values in the following manner:

• On UNICOS systems, the values are as follows:

kind_param length_value

4 8

8 (default) 16 (default)

16 32

• On UNICOS/mk systems, the values are as follows:

kind_param length_value

4 8

8 (default) 16 (default)

• On IRIX systems, the values are as follows:

124 007–3692–004

Declarations [5]

kind_param length_value

4 (default) 8 (default)

8 16

16 32

The following examples show entity-oriented declaration statements:

COMPLEX(KIND = LOW), POINTER :: ROOTS(:)
COMPLEX, POINTER :: DISCRIMINANT, COEFFICIENTS(:)

The following examples show attribute-oriented declaration statements:

COMPLEX(KIND = LOW) :: ROOTS(:)
COMPLEX :: DISCRIMINANT, COEFFICIENTS(:)

POINTER :: ROOTS, DISCRIMINANT, COEFFICIENTS

ANSI/ISO: The Fortran standard does not specify the COMPLEX*length_value
syntax. It is recommended that this syntax not be used in any new code.

5.1.5 Logical

A LOGICAL statement declares the names of entities to be of type logical. If a
kind selector is present, it specifies the representation method. For more
information on logical type, see Section 4.3.4, page 86.

The CF90 and MIPSpro 7 Fortran 90 compilers support the following formats
for declaring objects of this type:

LOGICAL [([KIND =] kind_param)] [[, attribute_list] ::] entity_list

LOGICAL * length_value [[, attribute_list] ::] entity_list

For kind_param values, see Section 4.3.4, page 86. The length_value values
correspond to the kind_param values in the following manner:

• On UNICOS systems and UNICOS/mk systems, the values are as follows:

kind_param length_value

1 1

2 2

4 4

007–3692–004 125

Fortran Language Reference Manual, Volume 1

8 (default) 8 (default)

• On IRIX systems, the values are as follows:

kind_param length_value

1 1

2 2

4 (default) 4 (default)

8 8

The following examples show entity-oriented declaration statements:

LOGICAL, ALLOCATABLE :: MASK_1(:), MASK_2(:)
LOGICAL(KIND = WORD), SAVE :: INDICATOR, STATUS

The following examples show attribute-oriented declaration statements:

LOGICAL MASK_1(:), MASK_2(:)

LOGICAL (KIND = WORD) INDICATOR, STATUS

ALLOCATABLE MASK_1, MASK_2

SAVE INDICATOR, STATUS

ANSI/ISO: The Fortran standard does not specify the LOGICAL*length_value
syntax. It is recommended that this syntax not be used in any new code.

5.1.6 Character

A CHARACTER statement declares the names of entities to be of type character.
For more information on character type, see Section 4.3.5, page 88.

The following is a format for declaring objects of this type:

CHARACTER [char_selector] [[, attribute_list] ::] entity_list

The components of this format are defined as follows:

126 007–3692–004

Declarations [5]

char_selector is length_selector

or (LEN = type_param_value, KIND = kind_value)

or (type_param_value, [KIND =] kind_value)

or (KIND = kind_value [, LEN = type_param_value])

length_selector is ([LEN =] type_param_value)

OBS or * char_length [,]

char_length is (type_param_value)

or scalar_int_literal_constant

type_param_value is specification_expr

or *

The optional comma in a length_selector is permitted only if no double colon
separator appears in the type declaration statement.

A character type declaration can specify a character length that is a nonconstant
expression if it appears in a procedure or a procedure interface if it is not a
component declaration in a derived-type definition. The length is determined
on entry into the procedure and is not affected by any changes in the values of
variables in the expression during the execution of the procedure. A character
object declared this way that is not a dummy argument is called an automatic
data object.

The length of a named character entity or a character component in a type
definition is specified by the character selector in the type specification unless
there is a character length in an entity or component declaration; if so, the
character length specifies an individual length and overrides the length in the
character selector. If a length is not specified in either a character selector or a
character length, the length is 1.

If the length parameter has a negative value, the length of the character entity is
0.

If a scalar integer literal constant is used to specify a character length, it must
not include a kind parameter. (This could produce an ambiguity when fixed
source form is used.)

A length parameter value of * can be used only in the following ways:

007–3692–004 127

Fortran Language Reference Manual, Volume 1

• To declare a dummy argument of a procedure, in which case the dummy
argument assumes the length of the associated actual argument when the
procedure is invoked.

• To declare a named constant, in which case the length is that of the constant
value.

• To declare the result variable for an external function. Any scoping unit that
invokes the function must declare the function with a length other than *, or
it must access such a declaration by host or use association. When the
function is invoked, the length of the result is the value specified in the
declaration in the program unit referencing the function. Note that an
implication of this rule is that a length of * must not appear in an
IMPLICIT statement.

• To declare a character pointee.

A function name must not be declared with a length of * if the function is an
internal or module function; or if it is array-valued, pointer-valued, or
recursive; or if it is a PURE function.

An interface body can be specified for a dummy or external function whose
result is of type CHAR*(*) only if the function is not invoked. This is because
the characteristics must match in both places.

The length of a character-valued statement function or statement function
dummy argument of type character must be an integer constant expression.

The following examples show entity-oriented character type declaration
statements:

CHARACTER(LEN = 10, KIND = ASCII), SAVE :: GREETING(2)

CHARACTER(10) :: PROMPT = "PASSWORD?"

CHARACTER(*), INTENT(IN) :: HOME_TEAM, VISITORS

CHARACTER*(3), SAVE :: NORMAL_1, LONGER(9)*20, NORMAL_2
CHARACTER :: GRADE = "A"

The following examples show attribute-oriented character type declaration
statements:

CHARACTER(LEN = 10, KIND = ASCII) :: GREETING

CHARACTER(10) :: PROMPT

CHARACTER(*) :: HOME_TEAM, VISITORS
CHARACTER*(3) :: NORMAL_1, LONGER*20, NORMAL_2

CHARACTER GRADE

SAVE :: GREETING, NORMAL_1, LONGER, NORMAL_2

128 007–3692–004

Declarations [5]

DIMENSION GREETING(2), LONGER(9)

INTENT(IN) :: HOME_TEAM, VISITORS
DATA PROMPT / "PASSWORD?" /, GRADE / "A" /

5.1.7 Derived Type

A TYPE declaration statement declares the names of entities to be of the
specified user-defined type. The type name appears in parentheses following the
keyword TYPE. For more information on derived types, see Section 4.4, page 97.

The following is a format for declaring objects of user-defined type:

TYPE (type_name) [[, attribute_list] ::] entity_list

The following examples show entity-oriented derived type declaration
statements:

TYPE(COLOR), DIMENSION(:), ALLOCATABLE :: HUES_OF_RED
TYPE(PERSON), SAVE :: CAR_POOL(3)

TYPE(PARAGRAPH), SAVE :: OVERVIEW, SUBSTANCE, SUMMARY

The following examples show attribute-oriented derived type declaration
statements:

TYPE(COLOR) :: HUES_OF_RED

TYPE(PERSON) :: CAR_POOL(3)
TYPE(PARAGRAPH) :: OVERVIEW, SUBSTANCE, SUMMARY

DIMENSION :: HUES_OF_RED(:)

ALLOCATABLE :: HUES_OF_RED

SAVE :: CAR_POOL, OVERVIEW, SUBSTANCE, SUMMARY

An object of derived type (a structure) must not have the PUBLIC attribute if its
type is private.

A structure constructor must be used to initialize an object of derived type. Each
component of the structure constructor must be an initialization expression. For
more information on structure constructors, see Section 4.5, page 109.

Note: Variables declared to be Cray pointers and pointees through the Cray
POINTER statement cannot be declared as components of derived types.

007–3692–004 129

Fortran Language Reference Manual, Volume 1

5.1.8 Cray Pointer (EXTENSION)

The Cray POINTER statement declares one variable to be a Cray pointer (that is,
to have the Cray pointer data type) and another variable to be its pointee; that
is, the value of the Cray pointer is the address of the pointee. This statement
has the following format:

POINTER (pointer_name, pointee_name [(array_spec)])
[, (pointer_name, pointee_name [(array_spec)])] ...

pointer_name Pointer to the corresponding pointee_name.
pointer_name contains the address of pointee_name.
Only a scalar variable can be declared type Cray
pointer; constants, arrays, statement functions,
and external functions cannot.

pointee_name Pointee of corresponding pointer_name. Must be a
variable name, array declarator, or array name.
The value of pointer_name is used as the address
for any reference to pointee_name; therefore,
pointee_name is not assigned storage. If
pointee_name is an array declarator, it can be
explicit-shape (with either constant or
nonconstant bounds) or assumed-size.

array_spec If present, this must be either an
explicit_shape_spec_list, with either constant or
nonconstant bounds) or an assumed_size_spec.

Example:

POINTER(P,B),(Q,C)

This statement declares Cray pointer P and its pointee B, and Cray pointer Q
and pointee C; the pointer’s current value is used as the address of the pointee
whenever the pointee is referenced.

An array that is named as a pointee in a Cray POINTER statement is a pointee
array. Its array declarator can appear in a separate type or DIMENSION
statement or in the pointer list itself. In a subprogram, the dimension declarator
can contain references to variables in a common block or to dummy arguments.
As with nonconstant bound array arguments to subprograms, the size of each

130 007–3692–004

Declarations [5]

dimension is evaluated on entrance to the subprogram, not when the pointee is
referenced. For example:

POINTER(IX, X(N,0:M))

ANSI/ISO: The Fortran standard does not specify the Cray POINTER
statement or data type. Variables declared to be pointers and pointees
through the Cray POINTER statement cannot be declared as components of
derived types.

In addition, pointees must not be deferred-shape or assumed-shape arrays. An
assumed-size pointee array is not allowed in a main program unit.

5.1.9 Cray Character Pointer (EXTENSION) (Implementation Deferred on IRIX Systems)

To define a character pointer, use the CLOC(3I) intrinsic function. (The LOC(3I)
intrinsic function returns only the word address.)

The FCD(3I) function can also be used to construct a Cray character pointer.
FCD(3I) has two integer arguments:

• On UNICOS and UNICOS/mk systems, the first argument is the word
address for the first character of the pointee.

• On all systems, the second argument is the character length of the pointee.

On UNICOS and UNICOS/mk systems, if the pointee does not begin on a
word boundary, the character offset can be added to the FCD(3I) result.

Note: Intrinsic functions CLOC(3I) and FCD(3I) are not part of the Fortran
standard.

The size of a Fortran Character Descriptor (FCD) and of a Cray character
pointer depends on your platform, so Cray character pointers should not be
equivalenced or storage-associated. For more information on FCDs, see FCD(3I).

Example:

CPTR = FCD(IADRS,ILEN) + IOFFSET

On UNICOS and UNICOS/mk systems, Cray character pointers are not
optimized. Statements containing them are not vectorized or Autotasked.

The following operations are the only ones allowed with Cray character
pointers, where cp is a character pointer and i is an integer. Arithmetic is in
bytes (characters), not words or bits:

007–3692–004 131

Fortran Language Reference Manual, Volume 1

• cp + i

• cp - i

• i + cp

• cp = cp

• cp relational_operator cp

5.2 Implicit Typing

Each variable, named constant, and function has a type and a name. If the type
is not declared explicitly, it is assumed from the first letter of the name. This
method of determining type is called implicit typing. In each scoping unit, there
is in effect a mapping of each of the letters A, B, ..., Z (and corresponding
lowercase letters) to one of the accessible types or to no type. IMPLICIT
statements in a scoping unit can be used to specify a mapping different from
the default mapping. If a new mapping for a letter is not specified in an
IMPLICIT statement, the default mapping continues to apply for that letter.

An IMPLICIT NONE statement specifies that there is no mapping for any letter
and thus all variables, named constants, and functions must be declared in type
declaration statements. If the host of a scoping unit contains the IMPLICIT
NONE statement and the scoping unit contains IMPLICIT statements for some
letters, the other letters retain the null mapping. This is the only situation in
which some initial letters specify an implied type and other initial letters
require explicit declarations.

A program unit is treated as if it had a host with the mapping shown in Figure
6. That is, each undeclared variable or function whose name begins with any of
the letters I, J, K, L, M, or N is of type integer and all others are of type real.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real Integer Real

a10632

Figure 6. Default implicit mapping for a program unit

The IMPLICIT statement is defined as follows:

132 007–3692–004

Declarations [5]

implicit_stmt is IMPLICIT implicit_spec_list

or IMPLICIT NONE

EXT or IMPLICIT UNDEFINED

implicit_spec is type_spec (letter_spec_list)

letter_spec is letter [- letter]

If IMPLICIT NONE appears, it must precede any PARAMETER statements and
there must be no other IMPLICIT statements in the scoping unit.

If the - letter option appears in a letter specification, the second letter must
follow the first alphabetically.

The same letter must not appear as a single letter or be included in a range of
letters more than once in all of the IMPLICIT statements in a scoping unit.

ANSI/ISO: The Fortran standard does not include the
IMPLICIT UNDEFINED syntax. IMPLICIT UNDEFINED is equivalent to
IMPLICIT NONE, but it is recommended that the IMPLICIT UNDEFINED
syntax not be used in new code.

An IMPLICIT statement can be used to specify implicit mappings for
user-defined types as well as for intrinsic types.

The IMPLICIT statement specifies that all variables, named constants, and
functions beginning with the indicated letters are assigned the indicated data
type (and type parameters) implicitly. For example, consider the following
statement:

IMPLICIT COMPLEX (A-C, Z)

In this statement, all undeclared variables, named constants, and functions
beginning with the letters A, B, C, and Z are of type default complex. If this is
the only IMPLICIT statement, undeclared variables, named constants, and
functions beginning with I through N will still be of type integer; undeclared
variables, named constants, and functions beginning with D through H and O
through Y will be of type real.

As another example, consider the following statement:

IMPLICIT NONE

In this statement, there is no implicit typing in the scoping unit. Each variable
and named constant local to the scoping unit, and each external function used
in the scoping unit, must be declared explicitly in a type statement. This

007–3692–004 133

Fortran Language Reference Manual, Volume 1

statement is useful for detecting inadvertent misspellings in a program because
misspelled names become undeclared rather than implicitly declared.

The following examples show IMPLICIT statements:

IMPLICIT INTEGER (A-G), LOGICAL(KIND = WORD) (M)
IMPLICIT CHARACTER*(10) (P, Q)

IMPLICIT TYPE(COLOR) (X-Z)

The additional complexity that implicit typing causes in determining the scope
of an undeclared variable in a nested scope is explained in the Fortran Language
Reference Manual, Volume 2.

5.3 Array Properties

An array object has the DIMENSION attribute. An array specification determines
the array’s rank, or number of dimensions. The extents of the dimensions may
be declared or left unspecified. If they are left unspecified, the array must also
have the ALLOCATABLE or POINTER attribute, or it must be a dummy argument.

5.3.1 Array Specifications

There are four formats that an array_spec can take:

array_spec is explicit_shape_spec_list

or assumed_shape_spec_list

or deferred_shape_spec_list

or assumed_size_spec

The maximum rank of an array is 7. A scalar is considered to have rank 0.

An array with a deferred_shape_spec_list must have the POINTER or
ALLOCATABLE attribute.

An array with an assumed_shape_spec_list or an assumed_size_spec must be a
dummy argument.

134 007–3692–004

Declarations [5]

5.3.1.1 Explicit-shape Arrays

An explicit-shape array has bounds specified in each dimension. Each
dimension is specified by an explicit_shape_spec, which is defined as follows:

explicit_shape_spec is lower_bound : upper_bound

lower_bound is specification_expr

upper_bound is specification_expr

For more information on specification_exprs, see Section 7.2.9.3, page 260.

The number of sets of bounds specified is the number of dimensions (rank) of
the array.

If the lower bound is omitted, the default value is 1.

The value of a lower bound or an upper bound can be positive, negative, or 0.

The subscript range of the array in a dimension is the set of integer values
between and including the lower and upper bounds, provided the upper bound
is not less than the lower bound. If the upper bound is less than the lower
bound, the range is empty, the extent in that dimension is 0, and the size of the
array is 0.

The expression for a bound could involve variables that cause the expression to
have different values each time the procedure in which it is declared is executed.
If so, the array must be a dummy argument, a function result, or an automatic
array, in which case the actual bounds are determined when the procedure is
entered. The bounds of such an array are unaffected by any redefinition or
undefinition of the specification variables during the execution of the procedure.

The following are examples of entity-oriented explicit-shape array declarations:

REAL Q(-10:10, -10:10, 2) ! in a main program

SUBROUTINE EX1(Z, I, J) ! in a

REAL, DIMENSION(2:I + 1, J) :: Z ! subroutine

The following are examples of attribute-oriented explicit-shape array
declarations:

REAL Q

DIMENSION Q(-10:10, -10:10, 2) ! in a main program

007–3692–004 135

Fortran Language Reference Manual, Volume 1

SUBROUTINE EX1(Z, I, J) ! in

REAL Z ! a
DIMENSION Z(2:I + 1, J) ! subroutine

5.3.1.2 Assumed-shape Arrays

An assumed-shape array is a dummy argument that takes the shape of the
actual argument passed to it. An assumed_shape_spec has the following format:

assumed_shape_spec is [lower_bound] :

The lower_bound of the assumed-shape array is the specified lower bound, if
present; otherwise it is 1.

The rank is equal to the number of colons in the assumed_shape_spec_list.

The upper bound is the extent of the corresponding dimension of the associated
array plus the lower bound minus 1.

An assumed-shape array must not have the POINTER or ALLOCATABLE
attribute.

The following example shows an entity-oriented, assumed-shape array
declaration:

REAL, DIMENSION(2:, :) :: X

The following example shows an attribute-oriented, assume-shaped array
declaration:

SUBROUTINE EX2(A, B, X)

REAL A(:), B(0:), X

DIMENSION X(2:, :)
INTENT(IN) A, B

. . .

As another example, assume that EX2 is called by the following statement:

CALL EX2(U, V, W(4:9, 2:6))

Dummy argument X is an array with bounds (2:7, 1:5). The lower bound
of the first dimension is 2 because X is declared to have a lower bound of 2.

136 007–3692–004

Declarations [5]

The upper bound is 7 because the dummy argument takes its shape from the
actual argument W.

5.3.1.3 Deferred-shape Arrays

A deferred-shape array is either an array pointer or an allocatable array. An
array pointer is an array that has the POINTER attribute. Its extent in each
dimension is determined when the pointer is allocated or when a pointer
assignment statement for the pointer is executed. An allocatable array is an
array that has the ALLOCATABLE attribute. Its bounds, and thus its shape, are
determined when the array is allocated. In both cases a colon specifies the
declared bound; that is, the format of a deferred_shape_spec is defined as follows:

deferred_shape_spec is :

The rank is equal to the number of colons in the deferred_shape_spec_list.

The bounds of an allocatable array are specified in an ALLOCATE statement
when the array is allocated.

The lower bound of each dimension of an array pointer is the result of the
LBOUND(3I) intrinsic function applied to the corresponding dimension of the
target. The upper bound of each dimension is the result of the UBOUND(3I)
intrinsic function applied to the corresponding dimension of the target. This
means that if the bounds are determined by allocation of the pointer, you can
specify them. If the bounds are determined by pointer assignment, there are
two possible interpretations:

• If the pointer target is a named whole array, the bounds are those declared
in the array declaration or those specified when the array was allocated.

• If the pointer target is an array section, the lower bound is 1 and the upper
bound is the extent in that dimension.

The bounds and shape of an array pointer or allocatable array are unaffected by
any subsequent redefinition or undefinition of variables involved in
determination of the bounds.

The following examples show entity-oriented, deferred-shape array declarations:

REAL, POINTER :: D(:, :), P(:) ! array pointers

REAL, ALLOCATABLE :: E(:) ! allocatable array

007–3692–004 137

Fortran Language Reference Manual, Volume 1

The following examples show attribute-oriented, deferred-shaped array
declarations:

REAL D

DIMENSION D(:, :), P(:), E(:)

POINTER D, P

ALLOCATABLE E

5.3.1.4 Assumed-size Arrays

An assumed-size array is a dummy argument array whose size is assumed
from that of the associated actual argument. Only the size is assumed. The
rank, extents, and bounds (except for the upper bound and extent in the last
dimension) are determined by the declaration of the dummy array. The rules
for argument association between an actual argument and an assumed-size
array are as follows:

• They must have the same initial array element.

• Successive array elements are storage associated. For information on storage
association, see Section 5.10, page 174.

• Declarations for the dummy argument determine the rank. They also
determine lower bounds for all dimensions and the extents and upper
bounds for all dimensions except the last.

• The size of the actual argument determines the size of the dummy argument
as explained in this section.

The format of an assumed_size_spec is defined as follows:

assumed_size_spec is [explicit_shape_spec_list,] [lower_bound :] *

The rank of an assumed-size array is the number of explicit-shape specifications
plus one.

The size of an assumed-size array is determined as follows:

• If the actual argument associated with the assumed-size dummy argument is
an array of any type other than character, the size is that of the actual array.

• If the actual argument associated with the assumed-size dummy array is an
array element of any type other than character with a subscript order value

138 007–3692–004

Declarations [5]

of v in an array of size x, the size of the dummy argument is x - v +1. For
information on array element order, see Section 6.4.7, page 203.

• If the actual argument is a character array, character array element, or a
character array element substring, and if it begins at character storage unit t
of an array with c character storage units, the size of the dummy array is
MAX(INT((c - t +1)/ e), 0) where e is the length of an element in
the dummy character array.

If r is the rank of the array, the bounds of the first r-1 dimensions are those
specified by the explicit-shape specification list, if present. The lower bound of
the last dimension is the specified lower bound, if present; otherwise it is 1.

The expression for a bound may involve variables that cause the expression to
have different values each time the procedure in which it is declared is
executed. If so, the bounds are unaffected by any subsequent redefinition or
undefinition of such variables involved in the determination of the bounds.

A function result must not be an assumed-size array.

An assumed-size array must not appear in a context where the shape of the
array is required, such as a whole array reference.

The following examples show entity-oriented, assumed-size array declarations:

SUBROUTINE EX3(N, S, Y)
REAL, DIMENSION(N, *) :: S

REAL Y(10, 5, *)

. . .

The following examples show attribute-oriented, assumed size array
declarations:

SUBROUTINE EX3(N, S, Y)

REAL S, Y

DIMENSION S(N, *), Y(10, 5, *)

. . .

5.3.2 DIMENSION Attribute and Statement

The dimensions of an array can be specified by the appearance of a DIMENSION
attribute or by the appearance of an array specification following the name of
the array in a type declaration statement. Both a DIMENSION attribute and an
array specification following the name can appear in a declaration statement. In
this case, the array specification following the name overrides the array

007–3692–004 139

Fortran Language Reference Manual, Volume 1

specification following the DIMENSION attribute. A format for a type
declaration statement with a DIMENSION attribute is as follows:

type, DIMENSION (array_spec) [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

ALLOCATABLE

AUTOMATIC (EXTENSION)

INTENT

OPTIONAL

POINTER

PARAMETER

PRIVATE

PUBLIC

SAVE

TARGET

VOLATILE (EXTENSION)

The type declaration can also contain an initialization_expr. An array
specification can also appear following a name in several different kinds of
statements to declare an array. They are DIMENSION, ALLOCATABLE, POINTER,
TARGET, and COMMON statements.

The DIMENSION statement is the statement form of the DIMENSION attribute
and is defined as follows:

dimension_stmt is DIMENSION [::] array_name (array_spec)
[, array_name (array_spec)] ...

The DIMENSION statement also confers the DIMENSION attribute. It is subject to
the same rules and restrictions as the DIMENSION attribute.

The following examples show entity-oriented declarations:

140 007–3692–004

Declarations [5]

INTEGER, DIMENSION(10), TARGET, SAVE :: INDICES

INTEGER, ALLOCATABLE, TARGET :: LG(:, :, :)

The following examples show attribute-oriented declarations:

INTEGER INDICES, LG(:, :, :)

DIMENSION INDICES(10)

TARGET INDICES, LG
ALLOCATABLE LG

SAVE INDICES

The following examples show the array specification in other statements:

INTEGER INDICES, LG
TARGET INDICES(10), LG

ALLOCATABLE LG(:, :, :)

SAVE INDICES

The following example shows the array specification in a COMMON statement:

COMMON /UNIVERSAL/ TIME(80), SPACE(20, 20, 20, 20)

5.3.3 ALLOCATABLE Attribute and Statement

Arrays are the only objects that can have the ALLOCATABLE attribute. An
allocatable array is one for which the bounds are determined when an
ALLOCATE statement is executed for the array. These arrays must be
deferred-shape arrays. The following is a format for a type declaration
statement with an ALLOCATABLE attribute:

type, ALLOCATABLE [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

DIMENSION (with deferred shape)

PRIVATE

PUBLIC

SAVE

TARGET

VOLATILE (EXTENSION)

007–3692–004 141

Fortran Language Reference Manual, Volume 1

The format of the ALLOCATABLE statement is defined as follows:

allocatable_stmt is ALLOCATABLE [::] array_name [(deferred_shape_spec_list)]
[,array_name [(deferred_shape_spec_list)]] ...

The array must not be a dummy argument or function result.

If the array is given the DIMENSION attribute elsewhere, the bounds must be
specified as colons (deferred shape).

The ALLOCATABLE statement also confers the ALLOCATABLE attribute. It is
subject to the same rules and restrictions as the ALLOCATABLE attribute.

The following examples show entity-oriented declarations:

REAL, ALLOCATABLE :: A(:, :)

LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASK1

The following examples show attribute-oriented declarations:

REAL A(:, :)

LOGICAL MASK1

DIMENSION MASK1(:)
ALLOCATABLE A, MASK1

5.4 POINTER Properties

Most attributes, when applied to an object, add characteristics that the object
would not have otherwise. The POINTER attribute, in some sense, removes a
characteristic that an object has. Ordinarily, an object has storage space set
aside. If the object has the POINTER attribute, it has no space initially and must
not be referenced until space is associated with it. An ALLOCATE statement
creates new space for a pointer object. A pointer assignment statement permits
the pointer to borrow the space from another object. The space that becomes
associated with a pointer is called the pointer’s target. The target can change
during the execution of a program. A pointer target is either an object or part
of an object declared to have the TARGET attribute; or it is an object or part of
an object that was created by the allocation of a pointer. A pointer can be
assigned the target (or part of the target) of another pointer.

Another way of thinking about a pointer is as a descriptor that contains
information about the type, type parameters, rank, extents, and location of the

142 007–3692–004

Declarations [5]

pointer’s target. Thus, a pointer to a scalar object of type real is different from a
pointer to an array of user-defined type.

5.4.1 POINTER Attribute and Statement

The following is a format for a type declaration statement with a POINTER
attribute:

type, POINTER [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

AUTOMATIC (EXTENSION)

DIMENSION (with deferred shape)

OPTIONAL

PRIVATE

PUBLIC

SAVE

VOLATILE (EXTENSION)

The POINTER statement also provides a means for declaring pointers. Its
format is defined as follows:

pointer_stmt is POINTER [::] object_name [(deferred_shape_spec_list)]
[, object_name [(deferred_shape_spec_list)]] ...

The target of a pointer can be a scalar or an array.

An array pointer must be declared as a deferred-shape array.

A pointer must not be referenced or defined unless it is associated with a target
that can be referenced or defined. (A pointer on the right-hand side of a pointer
assignment is not considered a pointer reference.)

The POINTER statement also confers the POINTER attribute. It is subject to the
same rules and restrictions as the POINTER attribute.

007–3692–004 143

Fortran Language Reference Manual, Volume 1

The following example shows an entity-oriented declaration:

TYPE(NODE), POINTER :: CURRENT
REAL, POINTER :: X(:, :), Y(:)

The following example shows an attribute-oriented declaration:

TYPE(NODE) CURRENT

REAL X(:, :), Y(:)
POINTER CURRENT, X, Y

5.4.2 TARGET Attribute and Statement

Only an object with the TARGET attribute can become the target of a pointer
during execution of a program. If an object does not have the TARGET attribute
or has not been allocated, no part of it can be accessed through a pointer. The
following is a format for a type declaration statement with a TARGET attribute:

type, TARGET [, attribute_list] :: entity_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

ALLOCATABLE

AUTOMATIC (EXTENSION)

DIMENSION

INTENT

OPTIONAL

PRIVATE

PUBLIC

SAVE

VOLATILE (EXTENSION)

The type declaration statement can also contain an initialization_expr.

The TARGET statement also provides a means for specifying pointer targets. It
has the following format:

144 007–3692–004

Declarations [5]

target_stmt is TARGET [::] object_name [(array_spec)]
[, object_name [(array_spec)]] ...

The TARGET statement also confers the TARGET attribute. It is subject to the
same rules and restrictions as the TARGET attribute.

The following examples show entity-oriented declarations:

TYPE(NODE), TARGET :: HEAD_OF_LIST

REAL, TARGET, DIMENSION(100, 100) :: V, W(100)

The following examples show attribute-oriented declarations:

TYPE(NODE) HEAD_OF_LIST

REAL V, W(100)

DIMENSION V(100, 100)

TARGET HEAD_OF_LIST, V, W

5.4.3 AUTOMATIC Attribute and Statement (EXTENSION)

The AUTOMATIC attribute specifies stack-based storage for a variable or array.
Such variables and arrays are undefined upon entering and exiting the
procedure. The following is the format for the AUTOMATIC specification:

type, AUTOMATIC [, attribute_list] :: entity_list

attribute_list For attribute_list, specify a variable name or an array declarator. If
an attribute_list item is an array, it must be declared with an
explicit_shape_spec with constant bounds. If an attribute_list item is
a pointer, it must be declared with a deferred_shape_spec.

If an attribute_list item has the same name as the function in which it is
declared, the attribute_list item must be scalar and of type integer, real, logical,
complex, or double precision.

If the attribute_list item is a pointer, the AUTOMATIC attribute applies to the
pointer itself and not to any target that may become associated with the pointer.

Subject to the rules governing combinations of attributes, attribute_list can
contain the following:

DIMENSION

TARGET

007–3692–004 145

Fortran Language Reference Manual, Volume 1

POINTER

VOLATILE (EXTENSION)

The following entities cannot have the AUTOMATIC attribute:

• Pointers or arrays used as function results

• Dummy arguments

• Statement functions

• Automatic array or character data objects

An attribute_list item cannot have the following characteristics:

• It cannot be defined in the scoping unit of a module.

• It cannot be a common block item.

• It cannot be specified more than once within the same scoping unit.

• It cannot be initialized with a DATA statement or with a type declaration
statement.

• It cannot also have the SAVE attribute.

• It cannot be specified as a Cray pointee.

• It cannot be specified on an object that appears in an AUXILIARY or
SYMMETRIC compiler directive.

ANSI/ISO: The Fortran standard does not specify the AUTOMATIC attribute
or statement, nor does it provide a means to explicitly declare automatic
variables as automatic. The Fortran standard does not specify compiler
directives.

5.5 Data Initialization and the DATA Statement

An entity can be initialized in a type declaration statement. When an
initialization expression appears in a declaration for an object that does not
have the PARAMETER attribute, the object (which is a variable) is assigned the
specified initial value. This object is a variable with explicit initialization.
Alternatively, explicit initialization can be specified in a DATA statement unless
the variable is of a derived type for which default initialization has been
specified.

146 007–3692–004

Declarations [5]

Note: The Fortran standard has declared that the placement of DATA
statements amongst executable statements is obsolescent.

The same rules apply to the assignment of the initial value as apply when an
assignment statement is executed. For example, if the variable is of type real but
the value is an integer value, the variable will be assigned the real equivalent of
the integer value. If the kind of the variable is different from the kind of the
value, the value will be converted to the kind of the variable. Array constructors
and broadcast values can be used to initialize arrays, and structure constructors
can be used to initialize variables of user-defined type. The format of a type
declaration statement that provides an initial value for a variable is as follows:

type [, attribute_list] :: object_name [(array_spec)]
[* char_length] = initialization_expr

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

DIMENSION

POINTER

PRIVATE

PUBLIC

SAVE

TARGET

VOLATILE (EXTENSION)

For example:

INTEGER :: I = 0

The PARAMETER attribute can also appear in the attribute_list, but in this case,
the object is declared to be a named constant.

The value associated with the name cannot be changed during the execution of
the program. For example, PI or E can be associated with the familiar
mathematical constants to provide more convenient access to these values.
Named constants are also used to assign names to values (such as a sales tax
rate) that could change at some later time. When a change is necessary, it can
be made at one place in the program rather than every place where the value is
used. The program can be recompiled to effect the change.

007–3692–004 147

Fortran Language Reference Manual, Volume 1

An array name that appears in a declaration statement that contains an
initialization_expr must have its dimensionality declared in the same statement
or a previous statement.

Initialization of a variable in a type declaration statement or any part of a
variable in a DATA statement implies that the variable has the SAVE attribute
unless the variable is in a named common block. The automatically acquired
SAVE attribute may be reaffirmed by the appearance of SAVE as an attribute in
its type declaration statement or by inclusion of the variable name in a separate
SAVE statement.

The DATA statement is defined as follows:

data_stmt is DATA data_stmt_set [[,] data_stmt_set]...

data_stmt_set is data_stmt_object_list / data_stmt_value_list / [[,]
data_stmt_object_list / data_stmt_value_list /] ...

data_stmt_object is variable

or data_implied_do

data_stmt_value is [data_stmt_repeat *] data_stmt_constant

data_stmt_constant is scalar_constant

or scalar_constant_subobject

or signed_int_literal_constant

or signed_real_literal_constant

or structure_constructor

or boz_literal_constant

or NULL()

EXT or typeless_constant

data_stmt_repeat is scalar_int_constant

or scalar_int_constant_subobject

data_implied_do is (data_i_do_object_list, data_i_do_variable= scalar_int_expr,
scalar_int_expr[, scalar_int_expr])

data_i_do_object is array_element

or scalar_structure_component

148 007–3692–004

Declarations [5]

or data_implied_do

data_i_do_variable is scalar_int_variable

EXT typeless_constant is octal_typeless_constant

or hexadecimal_typeless_constant

or binary_typeless_constant

EXT octal_typeless_constant is digit [digit...] B

or O" digit [digit...] "

or O’ digit [digit...] ’

or " digit [digit...] "O

or ’ digit [digit...] ’O

EXT hexadecimal_typeless_constant is X’hex_digit [hex_digit...]

or ’X" hex_digit [hex_digit...] "

or ’hex_digit [hex_digit...] ’X

or "hex_digit [hex_digit...] "X

or Z’hex_digit [hex_digit...] ’

or Z"hex_digit [hex_digit...] "

EXT binary_typeless_constant is B’bin_digit [bin_digit...]

or ’B"bin_digit [bin_digit...] "

The following notes pertain to the preceding format:

• digit must have one of the values 0 through 7 in octal_typeless_constant

• digit must have a value of 0 or 1 in binary_typeless_constant

• The B, O, X, and Z characters can be in uppercase or lowercase.

• The scalar_structure_component must contain at least one part_ref that contains
a subscript_list.

Note that a constant value cannot be an array constructor. An array can be
initialized by using the array name as the data_stmt_object and supplying values
for all the elements of the array using a data_implied_do.

007–3692–004 149

Fortran Language Reference Manual, Volume 1

ANSI/ISO: The Fortran standard does not specify the typeless_constant. If an
object is of type character or logical, the constant used for initialization must
be of the same type.

If an object is of type real or complex, the corresponding constant must be of
type integer, real, or complex. The CF90 and MIPSpro 7 Fortran 90 compilers
permit a default real object to be initialized with a BOZ, typeless, or character
(used as Hollerith) constant. No conversion of the BOZ value, typeless value, or
character constant takes place.

The CF90 and MIPSpro 7 Fortran 90 compilers permit an integer object to be
initialized with a BOZ, typeless, or character (used as Hollerith) constant in a
type declaration statement. The CF90 and MIPSpro 7 Fortran 90 compilers also
allow an integer object to be initialized with a typeless or character (used as
Hollerith) constant in a DATA statement.

ANSI/ISO: The Fortran standard does not specify typeless or character (used
as Hollerith) constants in initializations, nor does it allow BOZ constants to
be used in type declaration statement initializations.

If an object is of derived type, the corresponding structure constructor must be
of the same type.

The value of the constant, structure constructor (in a DATA statement), or
initialization expression (in a type declaration statement) must be such that its
value could be assigned to the corresponding variable using an intrinsic
assignment statement. The variable becomes initially defined with the value of
the constant.

A variable, or the same part of a variable, must not be initialized more than
once in an executable program.

Note: If a variable is initialized more than once in a program, the order of
initialization is not guaranteed. The compiler cannot enforce and does not
adhere to an order for initialization when multiple initializations appear in
source code. The load order can also affect the value of a variable that is
initialized multiple times, which means that the final value can vary from
loader to loader. Such code does not necessarily port from platform to
platform, for example from UNICOS to IRIX.

An object declared to be of a type that has default initialization cannot be
specified in a DATA statement. This object can be initialized in a type
specification statement. The initialization in the type specification statement
overrides the default initialization.

The following items cannot be initialized:

150 007–3692–004

Declarations [5]

• A dummy argument

• An object made accessible by use or host association

• A function result

• An automatic object

• An allocatable array

• An external or intrinsic procedure

ANSI/ISO: The Fortran standard does not allow initialization of objects in
named common blocks except from within a BLOCKDATA program unit. The
Fortran standard does not allow initialization of objects in a blank common
block.

For an object being initialized, any subscript, section subscript, substring starting
point, or substring ending point must be an integer initialization expression.

Each component of a structure constructor used for initialization must be an
initialization expression.

If the variable being initialized has the POINTER attribute, then
data_stmt_constant must be NULL(). The pointer has an initial association status
of disassociated.

A variable that appears in a DATA statement and is thereby declared and typed
implicitly can appear in a subsequent type declaration statement only if that
declaration confirms the implicit declaration. An array name, array section, or
array element appearing in a DATA statement must have had its array
properties established previously.

If a DATA statement constant value is a named constant or a structure
constructor, the named constant or derived type must have been declared
previously in the scoping unit or must have been made accessible by USE or
HOST association.

An array element or structure component that appears in a DATA statement
must not have a constant parent.

The DATA statement repeat factor value must be positive or zero. If it is a
named constant, the value must have been specified in a prior statement in the
scoping unit that contains the DATA statement or must have been made
accessible by use or host association.

007–3692–004 151

Fortran Language Reference Manual, Volume 1

In a scalar_constant_subobject that is a data_stmt_repeat, any subscript must be an
initialization expression.

In a scalar_constant_subobject that is a data_stmt_constant, any subscript, substring
starting point, or substring ending point must be an initialization expression.

A subscript in an array element of an implied-DO list must contain as operands
only constants or DO variables of the containing implied-DO s.

The scalar integer loop control expressions in an implied-DO must contain as
operands only constants or DO variables of the containing implied-DO s. Each
operation must be an intrinsic operation.

The data object list is expanded to form a sequence of scalar variables. An array
or array section is equivalent to the sequence of its array elements in array
element order. A data_implied_do is expanded to form a sequence of array
elements and structure components, under the control of the implied-DO
variable, as in the DO construct. A zero-sized array or an implied-DO with an
iteration count of 0 contributes no variables to the expanded list, but a character
variable declared to have zero length does contribute a variable to the list.

The data value list is expanded to form a sequence of scalar values. Each value
must be a constant or constant expression (structure constructor). If a value is
represented by a named constant, the named constant must be specified prior to
the DATA statement. A DATA statement repeat factor indicates the number of
times the following constant value is to be included in the sequence. If the
repeat factor is 0, the following value is ignored.

If a data_stmt_constant is a boz_literal_constant, the corresponding object must be
of type integer. A data_stmt_constant that is a boz_literal_constant is treated as if
the constant were an int_literal_constant with a kind_param that specified the
representation method with the largest decimal exponent range supported.

Scalar variables and values of the expanded sequence must be in one-to-one
correspondence. Each value specifies the initial value for the corresponding
variable. The lengths of the two expanded sequences must be the same.

ANSI/ISO: If the last item in the data_object_list is an array name, the value
list can contain fewer values than the number of elements in the array. Any
element that is not assigned a value is undefined.

The following examples show type declaration statement initializations:

CHARACTER(LEN = 10) :: NAME = "JOHN DOE"

INTEGER, DIMENSION(0:9) :: METERS = (/ (0, I = 1, 10) /)

TYPE(PERSON) :: ME = PERSON(21, "JOHN SMITH"), &

152 007–3692–004

Declarations [5]

YOU = PERSON(35, "FRED BROWN")

INTEGER :: BIRD(3) = 1
REAL :: SKEW(100,100) = RESHAPE ((/((1.0, K = 1, J-1), &

(0.0, K = J, 100), J = 1, 100)/), (/ 100, 100 /))

The following are examples of DATA statement initializations:

CHARACTER*10 NAME
INTEGER METERS(0:9)

DATA NAME /"JOHN DOE"/, METERS /10*0/

TYPE(PERSON) ME, YOU

DATA ME /PERSON(21, "JOHN SMITH")/
DATA YOU%AGE, YOU%NAME /35, "FRED BROWN"/

INTEGER BIRD(3)

DATA BIRD /3*1/

REAL SKEW(100, 100)

DATA ((SKEW (K, J), K = 1, J-1), J = 1, 100) /4950 * 1.0/

DATA ((SKEW (K, J), K = J, 100), J = 1, 100) /5050 * 0.0/

In both forms, the character variable NAME is initialized with the value JOHN
DOE with padding on the right because the length of the constant is less than
the length of the variable. All ten elements of the integer array METERS are
initialized to 0; an array constructor is used in the type declaration statement
form; a repeat factor is used for the DATA statement form. ME and YOU are
structures declared using the user-defined type PERSON defined in Section 4.6,
page 112. In both forms ME is initialized using a structure constructor. In the
DATA statement form YOU is initialized by supplying a separate value for each
component.

In the type declaration statement form, the value 1 is broadcast to all 3 elements
of BIRD. In the DATA statement form, a value must be supplied for each
element of BIRD.

In both forms, the two-dimensional array SKEW is initialized so that the lower
triangle is 0 and the strict upper triangle is 1. The RESHAPE(3I) intrinsic
function is required in the first form because SKEW is of rank 2. Repeat factors
are used in the second form.

007–3692–004 153

Fortran Language Reference Manual, Volume 1

5.5.1 PARAMETER Attribute and Statement

A constant can be given a name in a type declaration statement with the
PARAMETER attribute or in a PARAMETER statement. The following is a format
for a type declaration statement with a PARAMETER attribute:

type, PARAMETER [, attribute_list] :: name = initialization_expression

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

DIMENSION

PRIVATE

PUBLIC

The initialization_expression must be present.

More than one named constant can be specified in a single type declaration
statement; see the examples in this section.

The named constant becomes defined with the value determined from the
initialization expression in accordance with the rules for intrinsic assignment.
Any named constant that appears in the initialization expression must meet one
of the following conditions:

• Be defined previously in this type declaration statement or in a previous
type declaration statement

• Be accessible through host or use association

If the named constant is an array, it must have its array properties declared in
this statement or in a previous statement in the same scoping unit.

The PARAMETER statement also provides a means of defining a named constant.
Its format is defined as follows:

parameter_stmt is PARAMETER (named_constant_def_list)

named_constant_def is named_constant = initialization_expr

The PARAMETER statement also confers the PARAMETER attribute. It is subject to
the same rules and restrictions as the PARAMETER attribute.

154 007–3692–004

Declarations [5]

The PARAMETER attribute must not be specified for dummy arguments,
functions, or objects in a common block.

A named constant that appears in a PARAMETER statement and is thereby
declared and typed implicitly may appear in a subsequent type declaration
statement only if that declaration confirms the implicit declaration.

A named array constant appearing in a PARAMETER statement must have had
its array properties established previously.

A named constant must not appear in a format specification because of a
possible ambiguity.

The following examples show entity-oriented declarations:

INTEGER, PARAMETER :: STATES = 50
INTEGER, PARAMETER :: M = MOD(28, 3), &

NUMBER_OF_SENATORS = 2 * STATES

The following examples show attribute-oriented declarations:

INTEGER STATES, M, NUMBER_OF_SENATORS
PARAMETER(STATES = 50)

PARAMETER(M = MOD(28, 3), &

NUMBER_OF_SENATORS = 2 * STATES)

5.6 Object Accessibility and Use

Several attributes indicate where an object can be accessed and how it can be
used. Some of these attributes apply only to objects in a module and others
apply only to dummy arguments or other variables that are declared in a
subprogram.

5.6.1 PUBLIC and PRIVATE Attributes and Statements

The PUBLIC and PRIVATE attributes control access to type definitions, variables,
functions, and named constants in a module. The PUBLIC attribute declares
that entities in a module are available outside the module by use association;
the PRIVATE attribute prevents access outside the module by use association.
The default accessibility is PUBLIC, but it can be changed to PRIVATE.

The following formats are for type declaration statements with PUBLIC and
PRIVATE attributes:

007–3692–004 155

Fortran Language Reference Manual, Volume 1

type, PUBLIC [, attribute_list] :: entity_decl_list

type, PRIVATE [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

ALLOCATABLE

DIMENSION

EXTERNAL

INTRINSIC

PARAMETER

POINTER

SAVE

TARGET

VOLATILE (EXTENSION)

The type declaration statement can also contain an initialization_expr.

PUBLIC and PRIVATE specifications can also appear in the derived-type
statement of a derived-type definition in a module to specify the accessibility of
the type definition, as shown in the following:

TYPE, PUBLIC :: type_name

TYPE, PRIVATE :: type_name

If a PRIVATE statement appears inside a type definition, it specifies that,
although the type may be accessible outside the module, its components are
private.

For more information on derived-type definitions, see Section 4.4.1, page 99.

PUBLIC and PRIVATE statements provide another means for controlling the
accessibility of variables, functions, type definitions, and named constants.
PUBLIC and PRIVATE statements can control the accessibility of some entities
that do not have a type; these are subroutines, generic specifiers, and namelist
groups. The formats for PUBLIC and PRIVATE statements are defined as
follows:

156 007–3692–004

Declarations [5]

access_stmt is access_spec [[::] access_id_list]

access_spec is PUBLIC

or PRIVATE

access_id is use_name

or generic_spec

Specify one of the following for generic_spec:

• generic_name

• OPERATOR (defined_operator)

• ASSIGNMENT (=)

PUBLIC and PRIVATE statements can appear only in a module.

The PUBLIC and PRIVATE statements also confer the PUBLIC or PRIVATE
attribute. They are subject to the same rules and restrictions as the PUBLIC and
PRIVATE attributes.

A use_name can be the name of a variable, procedure, derived type, named
constant, or namelist group.

Generic specifications are explained further in the Fortran Language Reference
Manual, Volume 2. The following are examples of PUBLIC and PRIVATE
statements that might be used with generic specifications:

PUBLIC HYPERBOLIC_COS, HYPERBOLIC_SIN ! generic names

PRIVATE MY_COS_RAT, MY_SIN_RAT ! specific names

PRIVATE MY_COS_INF_PREC, MY_SIN_INF_PREC ! specific names

PUBLIC :: OPERATOR (.MYOP.), OPERATOR (+), ASSIGNMENT (=)

Only one PUBLIC or PRIVATE statement with an omitted access_id list is
permitted in the scoping unit of a module. It determines the default
accessibility of the module.

The default accessibility of entities defined in a module is PUBLIC. A PUBLIC
statement without an access_id list can appear in the module to confirm the
default accessibility. A PRIVATE statement without an access_id list can appear
in the module to change the default accessibility.

007–3692–004 157

Fortran Language Reference Manual, Volume 1

A procedure that has a generic identifier that is public is accessible through the
generic identifier even if its specific name is private. The converse is also true.
That is, a module procedure that is public, but whose generic identifier is
private, is still accessible through its specific name.

A module procedure that has an argument of a private type or a function result
of a private type must be private and must not have a generic identifier that is
public.

The following examples show entity-oriented declarations:

REAL, PUBLIC :: GLOBAL_X
TYPE, PRIVATE :: LOCAL_DATA

LOGICAL :: FLAG

REAL, DIMENSION(100) :: DENSITY

END TYPE LOCAL_DATA

The following examples show attribute-oriented declarations:

REAL GLOBAL_X

PUBLIC GLOBAL_X

TYPE LOCAL_DATA

LOGICAL FLAG
REAL DENSITY

DIMENSION DENSITY(100)

END TYPE LOCAL_DATA

PRIVATE LOCAL_DATA

The following example shows a public type declaration with private
components:

TYPE LIST_ELEMENT

PRIVATE

REAL VALUE

TYPE(LIST_ELEMENT), POINTER :: NEXT, FORMER
END TYPE LIST_ELEMENT

The following example shows how to override the default accessibility:

MODULE M

PRIVATE
REAL R, K, TEMP(100) ! R, K, and TEMP are private

REAL, PUBLIC :: A(100), B(100) ! A and B are public

END MODULE M

158 007–3692–004

Declarations [5]

5.6.2 INTENT Attribute and Statement

The INTENT attribute specifies the intended use of a dummy argument. If
specified, it can help detect errors, provide information for readers of the
program, and give the compiler information that can be used to make the code
more efficient. It is particularly valuable in creating software libraries.

Some dummy arguments are referenced but not redefined within the
subprogram; some are defined before being referenced within the subprogram;
others can be referenced before being redefined. INTENT has three forms: IN,
OUT, and INOUT, which correspond respectively to the preceding three
situations.

If the intent of an argument is IN, the subprogram must neither change the
value of the argument nor must the argument become undefined during the
course of the subprogram. If the intent is OUT, the subprogram must not use
the argument before it is defined, and it must be definable. If the intent is
INOUT, the argument can be used to communicate information to the
subprogram and return information; it must be definable. If no intent is
specified, the use of the argument is subject to the limitations of the associated
actual argument. For example, the actual argument may be a constant (for
example, 2) or a more complicated expression (for example, N+2), and in these
cases the dummy argument can be referenced but not defined.

The following is a format for a type declaration statement with an INTENT
attribute:

type, INTENT (intent_spec) [, attribute_list] :: decl_list

For intent_spec, specify one of the following arguments:

IN

OUT

INOUT

The attribute_list can contain the following attributes:

DIMENSION

OPTIONAL

TARGET

VOLATILE (EXTENSION)

007–3692–004 159

Fortran Language Reference Manual, Volume 1

The INTENT statement also provides a means of specifying an intent for an
argument. Its format is defined as follows:

intent_stmt is INTENT (intent_spec) [::] dummy_arg_name_list

intent_spec is IN

or OUT

or INOUT

The INTENT attribute can be specified only for dummy arguments.

An INTENT statement can appear only in the specification part of a subprogram
or interface body.

An intent must not be specified for a dummy argument that is a dummy
procedure because it is not possible to change the definition of a procedure.
Intent for a dummy pointer must not be specified either.

The INTENT statement also confers the INTENT attribute. It is subject to the
same rules and restrictions as the INTENT attribute.

If an argument is of a type that is default initialized when it is declared with
INTENT(OUT), the components that are initialized are defined when the
procedure is invoked.

An assumed-size array with INTENT(OUT) cannot be a type for which default
initialization is specified.

The following examples show entity-oriented declarations:

SUBROUTINE MOVE(FROM, TO)

USE PERSON_MODULE

TYPE(PERSON), INTENT(IN) :: FROM

TYPE(PERSON), INTENT(OUT) :: TO

SUBROUTINE SUB(X, Y)

INTEGER, INTENT(INOUT) :: X, Y

The following examples show attribute-oriented declarations:

SUBROUTINE MOVE(FROM, TO)

USE PERSON_MODULE

TYPE(PERSON) FROM, TO

160 007–3692–004

Declarations [5]

INTENT(IN) FROM

INTENT(OUT) TO

SUBROUTINE SUB(X, Y)

INTEGER X, Y

INTENT(INOUT) X, Y

5.6.3 OPTIONAL Attribute and Statement

The OPTIONAL attribute allows a procedure reference to omit arguments with
this attribute. The PRESENT(3I) intrinsic function can be used to test the
presence of an optional argument in a particular invocation and this test can be
used to control the subsequent processing in the procedure. If the argument is
not present, the subprogram can supply a default value or it can use an
algorithm that is not based on the presence of the argument.

The following is a format for a type declaration statement with an OPTIONAL
attribute:

type, OPTIONAL [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

DIMENSION

EXTERNAL

INTENT

POINTER

TARGET

VOLATILE (EXTENSION)

The OPTIONAL statement also provides a means for specifying an argument
that can be omitted. Its format is defined as follows:

optional_stmt is OPTIONAL [::] dummy_arg_name_list

The OPTIONAL attribute can be specified only for dummy arguments.

007–3692–004 161

Fortran Language Reference Manual, Volume 1

An OPTIONAL statement can appear only in the scoping unit of a subprogram
or interface body.

The OPTIONAL statement also confers the OPTIONAL attribute. It is subject to
the same rules and restrictions as the OPTIONAL attribute.

The following examples show entity-oriented declarations in a program
fragment:

CALL SORT_X(X = VECTOR_A)

. . .

SUBROUTINE SORT_X(X, SIZEX, FAST)
REAL, INTENT(INOUT) :: X (:)

INTEGER, INTENT(IN), OPTIONAL :: SIZEX

LOGICAL, INTENT(IN), OPTIONAL :: FAST

. . .

INTEGER TSIZE

. . .

IF (PRESENT(SIZEX)) THEN

TSIZE = SIZEX

ELSE
TSIZE = SIZE(X)

END IF

IF (.NOT. PRESENT(FAST) .AND. TSIZE > 1000) THEN

CALL QUICK_SORT(X)
ELSE

CALL BUBBLE_SORT(X)

END IF

. . .

The following examples show attribute-oriented declarations to be inserted in
the same program fragment:

SUBROUTINE SORT_X(X, SIZEX, FAST)

REAL X(:)

INTENT(INOUT) X

INTEGER SIZEX
LOGICAL FAST

INTENT(IN) SIZEX, FAST

OPTIONAL SIZEX, FAST

. . .

162 007–3692–004

Declarations [5]

INTEGER TSIZE

. . .

5.6.4 SAVE Attribute and Statement

Variables with the SAVE attribute retain their value and their definition,
association, and allocation status after the subprogram in which they are
declared completes execution. Variables without the SAVE attribute cannot be
depended on to retain their value and status, although the CF90 and MIPSpro 7
Fortran 90 compilers treat named common blocks as if they had the SAVE
attribute. The SAVE attribute should always be specified for an object or the
object’s common named block, if it is necessary for the object to retain its value
and status.

Objects declared in a module can be given the SAVE attribute, in which case
they always retain their value and status when a procedure that uses the
module completes execution. Objects in modules must be in continual use in
order to retain their values.

Objects declared in recursive subprograms can be given the SAVE attribute.
Such objects are shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the SAVE attribute by default.

The following is a format for a type declaration statement with a SAVE attribute:

type, SAVE [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

ALLOCATABLE

DIMENSION

POINTER

PRIVATE

PUBLIC

TARGET

VOLATILE (EXTENSION)

007–3692–004 163

Fortran Language Reference Manual, Volume 1

The type declaration statement can also contain an initialization_expr, but it
cannot have the PARAMETER attribute.

The SAVE statement provides a means for specifying the SAVE attribute for
objects and also for named common blocks. Its format is defined as follows:

save_stmt is SAVE [[::] saved_entity_list]

saved_entity is data_object_name

or / common_block_name /

A SAVE statement without a saved entity list is treated as though it contained
the names of all items that could be saved in the scoping unit. The CF90 and
MIPSpro 7 Fortran 90 compilers allow you to insert multiple SAVE statements
without entity lists in a scoping unit.

ANSI/ISO: The Fortran standard permits only one SAVE statement without
an entity list in a scoping unit.

If SAVE appears in a main program as an attribute or a statement, it has no
effect.

The following objects must not be saved:

• A procedure

• A function result

• A dummy argument

• A named constant

• An automatic data object

• An object in a common block

• A namelist group

A variable in a common block cannot be saved individually; the entire named
common block must be saved if you want any variables in it to be saved.

A named common block saved in one scoping unit of a program is saved
throughout the program.

164 007–3692–004

Declarations [5]

ANSI/ISO: The Fortran standard states that if a named common block is
saved in one scoping unit of a program, it must be saved in every scoping
unit of the program in which it is defined (other than the main program).

If a named common block is specified in a main program, it is available to any
scoping unit of the program that specifies the named common block; it does not
need to be saved.

The SAVE statement also confers the SAVE attribute. It is subject to the same
rules and restrictions as the SAVE attribute.

The following example shows an entity-oriented declaration:

CHARACTER(LEN = 12), SAVE :: NAME

The following example shows an attribute-oriented declaration:

CHARACTER*12 NAME

SAVE NAME

The following example shows saving objects and named common blocks:

SAVE A, B, /BLOCKA/, C, /BLOCKB/

5.6.5 VOLATILE Attribute and Statement (IRIX Systems Only)

The VOLATILE attribute and statement specifies that the value of an object is
unpredictable. The object’s value can change without visible assignment by the
program, and it’s value can be affected by external events. The presence of this
statement prevents the compiler from optimizing references to specified
variables, arrays, and common blocks of data.

The following format is for a type declaration statement with the VOLATILE
attribute:

type, VOLATILE [, attribute_list] :: entity_decl_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

ALLOCATABLE

AUTOMATIC (EXTENSION)

DIMENSION

007–3692–004 165

Fortran Language Reference Manual, Volume 1

INTENT

OPTIONAL

POINTER

PRIVATE

PUBLIC

SAVE

TARGET

The entity_decl_list can include the name of a common block, enclosed in slash
characters (for example, /common_block_name/).

The format for the VOLATILE statement is as follows:

EXT volatile_stmt is VOLATILE entity_decl_list

EXT entity_decl_list is data_object_name

EXT or /common_block_name/

The following example shows a type declaration statement that specifies the
VOLATILE attribute:

INTEGER, VOLATILE :: D, E

In the following example, the named common block, BLK1, and the variables D
and E are volatile. Variables P1 and P4 become volatile because of the direct
equivalence of P1 and the indirect equivalence of P4. The code that shows this
is as follows:

PROGRAM TEST

LOGICAL(KIND=1) IPI(4)

INTEGER(KIND=4) A, B, C, D, E, ILOOK

INTEGER(KIND=4) P1, P2, P3, P4

COMMON /BLK1/A, B, C

VOLATILE /BLK1/, D, E

EQUIVALENCE(ILOOK, IPI)

EQUIVALENCE(A, P1)

EQUIVALENCE(P1, P4)

166 007–3692–004

Declarations [5]

The presence of a VOLATILE attribute or statement can inhibit some
optimizations because it asserts that the compiler must perform loads and stores
from the specified objects. As an example, consider the following code fragment:

J = 1

DO I = 1,100000

IF (J.EQ.2) PRINT ’FOO’

END DO

If the preceding code were included in a Fortran program, the compiler might
remove the statement IF (J.EQ.2) PRINT ’FOO’ because J is loop
invariant and because J was previously assigned the value 1. If J were
declared VOLATILE, the compiler would perform all loads of J because
something else might affect the value of J.

ANSI/ISO: The Fortran standard does not describe the VOLATILE attribute
or statement.

A variable or common block must be declared VOLATILE if it can be read or
written to in a way that is not visible to the compiler. This would be the case in
the following situations:

• If an operating system feature is used to place a variable in shared memory
so that it can be accessed by other programs, the variable must be declared
VOLATILE.

• If a variable is accessed or modified by a routine called by the operating
system when an asynchronous event occurs, the variable must be declared
VOLATILE.

• If a variable might be written by one thread and then read by a different
thread, it must be marked VOLATILE.

If an array is declared VOLATILE, each element in the array is VOLATILE. If a
common block is declared VOLATILE, each variable in the common block is
VOLATILE.

If an object of derived type is declared VOLATILE, its components are
VOLATILE.

If a pointer is declared VOLATILE, the pointer itself is VOLATILE.

A VOLATILE statement must not specify a procedure, function result, or
NAMELIST group name.

007–3692–004 167

Fortran Language Reference Manual, Volume 1

5.7 Procedure Properties

If an external or dummy procedure is to be an actual argument to a subprogram,
the procedure name must be declared EXTERNAL. (A dummy procedure is a
dummy argument that is a procedure.) If an external procedure has the same
name as an intrinsic procedure, again the name must be declared EXTERNAL.
When this occurs, the intrinsic procedure of that name is no longer accessible to
that program unit. If an intrinsic procedure is to be an actual argument, the
name of the procedure must be declared INTRINSIC. The Fortran Language
Reference Manual, Volume 2, discusses further the usage of these attributes.

Because only functions, not subroutines, are declared to have a type (the type of
the result), only function names can appear in type declaration statements. The
EXTERNAL and INTRINSIC attributes in type declaration statements therefore
apply only to functions. The EXTERNAL and INTRINSIC statements can be
used to specify properties of subroutines, and the EXTERNAL statement can
specify block data program units. For information on block data program units,
see the Fortran Language Reference Manual, Volume 2.

5.7.1 EXTERNAL Attribute and Statement

The EXTERNAL attribute in a type declaration statement indicates that a name is
the name of an external function or a dummy function and permits the name to
be used as an actual argument.

The following is a format for a type declaration statement with an EXTERNAL
attribute:

type, EXTERNAL [, attribute_list] :: function_name_list

Subject to the rules governing combinations of these attributes, attribute_list can
contain the following:

OPTIONAL

PRIVATE

PUBLIC

An interface block can be used to describe the interface of an external function.
A function described by an interface block has the EXTERNAL attribute by
default, so the function name cannot also be given the EXTERNAL attribute by
any other means. Note that an interface block specifies the EXTERNAL attribute
for all procedures in the interface block, with the exception of module

168 007–3692–004

Declarations [5]

procedures specified in MODULE PROCEDURE statements within the block. For
information on interface blocks, see the Fortran Language Reference Manual,
Volume 2.

The EXTERNAL statement provides a means for declaring subroutines and block
data program units, as well as functions, to be external. Its format is defined as
follows:

external_stmt is EXTERNAL external_name_list

Each external name must be the name of an external procedure, a dummy
argument, or a block data program unit.

If a dummy argument is specified to be EXTERNAL, the dummy argument is a
dummy procedure.

The EXTERNAL statement also confers the EXTERNAL attribute. It is subject to
the same rules and restrictions as the EXTERNAL attribute.

The following examples of entity-oriented declarations:

SUBROUTINE SUB(FOCUS)

INTEGER, EXTERNAL :: FOCUS

LOGICAL, EXTERNAL :: SIN

The following example shows an attribute-oriented declaration:

SUBROUTINE SUB (FOCUS)

INTEGER FOCUS

LOGICAL SIN

EXTERNAL FOCUS, SIN

FOCUS is declared to be a dummy procedure. SIN is declared to be an external
procedure. Both are functions. To declare an external subroutine, the EXTERNAL
statement or an interface block must be used because a subroutine does not
have a type, and thus its attributes cannot be specified in a type declaration
statement. The specific and generic name SIN of the intrinsic function SIN is
no longer available to subroutine SUB.

007–3692–004 169

Fortran Language Reference Manual, Volume 1

5.7.2 INTRINSIC Attribute and Statement

The INTRINSIC attribute in a type declaration statement indicates that a name
is the name of an intrinsic function and permits the names of some intrinsic
functions to be used as actual arguments.

The following is a format for a type declaration statement with an INTRINSIC
attribute:

type, INTRINSIC [, attribute_list] :: intrinsic_function_name_list

For attribute_list, specify one of the following attributes:

PRIVATE

PUBLIC

The INTRINSIC statement provides a means for declaring intrinsic subroutines,
as well as functions. Its format is defined as follows:

intrinsic_stmt is INTRINSIC intrinsic_procedure_name_list

Each intrinsic_procedure_name must be the name of an intrinsic procedure.

A name must not be declared to be both EXTERNAL and INTRINSIC in a
scoping unit.

A type can be specified for an intrinsic function even though it has a type as
specified in the Fortran Language Reference Manual, Volume 2. If a type is
specified for the generic name of an intrinsic function, it does not remove the
generic properties of the function name.

The INTRINSIC statement also confers the INTRINSIC attribute. It is subject to
the same rules and restrictions as the INTRINSIC attribute.

The CF90 and MIPSpro 7 Fortran 90 compilers have implemented intrinsic
procedures in addition to the ones required by the standard. These procedures
have the status of intrinsic procedures, but programs that use them may not be
portable. It is recommended that such procedures be declared INTRINSIC to
allow other processors to diagnose whether or not they are intrinsic for those
processors.

The following is an example of an entity-oriented declaration:

170 007–3692–004

Declarations [5]

REAL, INTRINSIC :: SIN, COS

The following is an example of an attribute-oriented declaration:

REAL SIN, COS

INTRINSIC SIN, COS

Because the interfaces of intrinsic procedures are known to the compiler, it is
not necessary to specify a type for them, but it is not incorrect to do so.

5.8 Automatic Data Objects

Automatic data objects are especially useful as working storage in a procedure.
These objects can be declared only in procedures or procedure interfaces; they
are created when the procedure is entered and disappear when the procedure
completes execution. They can be created the same size as an argument to the
procedure, so they can be tailored to each invocation.

The following are the three kinds of automatic data objects:

• Automatic arrays of any type

• Objects of type character

• Local variables and arrays not in a common block or module and not
declared with the SAVE attribute

An automatic array or character data object is one with a specification that depends
on the value of a nonconstant expression and is not a dummy argument.
Automatic arrays are those whose size depends on a variable used in a bound
expression. The size of an automatic array or character data object is not known
at compile time. The size is calculated at execution time, and storage is allocated
upon entry into the procedure. Storage is freed upon exit from the procedure.
Local variables and arrays may be declared with the AUTOMATIC attribute. For
more information on the AUTOMATIC attribute, see Section 5.4.3, page 145.

The following are examples of automatic data objects:

SUBROUTINE SUB (N, DUMMY_ARRRAY)

COMMON /CB/ K
INTEGER AUTO_ARRAY(N) ! Automatic array.

CHARACTER(LEN=K*2) CH ! Automatic character variable.

INTEGER DUMMY_ARRAY(K,N) ! Not an automatic array

! because it is a dummy

! argument, not a local array.. . .

007–3692–004 171

Fortran Language Reference Manual, Volume 1

END SUBROUTINE

An automatic array or character data object is one with a specification that
depends on the value of a nonconstant expression and is not a dummy
argument. Automatic arrays are those whose size depends on a value used in a
bound expression.

An automatic array or character data object is similar to an object declared with
the AUTOMATIC attribute. For both items, storage is allocated when the
procedure is entered and deallocated when the procedure is exited. The
differences between these types are as follows:

• The size of an automatic array or character data object is not known at
compile time. The size is calculated at execution time, and storage is
allocated upon execution of the procedure. Automatic arrays and character
data objects cannot be declared with the AUTOMATIC attribute.

• The size of objects declared with the AUTOMATIC attribute must be known at
compile time. Storage is allocated with the initial stack allocation upon entry
to the procedure.

In Fortran, the term automatic array or character object does not include
noncharacter scalar local variables or arrays with constant bounds. For an array,
the extents in each dimension are determined when the procedure is entered.
For a character object, the length is determined when the procedure is entered.
Apart from dummy arguments, this is the only character object whose length
can vary. For arrays, extents can vary for allocatable arrays and array pointers
as well as dummy arguments. An automatic array or character object is not a
dummy argument, but it is declared with a specification expression that is not a
constant expression. The specification expression can be the length of the
character object or the bounds of the array. For variables declared with the
AUTOMATIC attribute, the variables must be scalar or array values with constant
bounds, and they cannot be declared in a common block or module. These
variables are allocated on the stack. Automatic objects cannot be saved or
initialized.

In the following example, C is an automatic array and MESSAGE is an automatic
character object:

SUBROUTINE SWAP_ARRAYS(A, B, A_NAME, B_NAME)
REAL, DIMENSION(:), INTENT(INOUT) :: A, B

CHARACTER(LEN = *), INTENT(IN) :: A_NAME, B_NAME

REAL C(SIZE (A))

CHARACTER (LEN = LEN(A_NAME) + LEN(B_NAME) + 17) MESSAGE

172 007–3692–004

Declarations [5]

C = A
A = B

B = C

MESSAGE = A_NAME // " and " // B_NAME // " are swapped"

PRINT *, MESSAGE

END SUBROUTINE SWAP_ARRAYS

ANSI/ISO: The Fortran standard does not provide a means to explicitly
declare automatic variables as automatic.

5.9 NAMELIST Statement

A NAMELIST statement establishes the name for a collection of objects that can
then be referenced by the group name in certain I/O statements. The
NAMELIST statement is defined as follows:

namelist_stmt is NAMELIST / namelist_group_name / namelist_group_object_list
[[,] / namelist_group_name / namelist_group_object_list] ...

namelist_group_object is variable_name

A variable in the variable name list must not be an array dummy argument
with nonconstant bounds, a variable with assumed character length, an
automatic object, a pointer, a Cray pointer, an object of a type that has a pointer
component at any level, an allocatable array, or a subobject of any of the
preceding objects.

ANSI/ISO: The Fortran standard does not describe Cray pointers.

If a namelist group name has the PUBLIC attribute, no item in the namelist
group object list can have the PRIVATE attribute or have private components.

The namelist group name cannot be a name made accessible by USE association.

The order in which the data objects (variables) are specified in the NAMELIST
statement determines the order in which the values appear on output.

A namelist group name can occur in more than one NAMELIST statement in a
scoping unit. The variable list following each successive appearance of the

007–3692–004 173

Fortran Language Reference Manual, Volume 1

same namelist group name in a scoping unit is treated as a continuation of the
list for that namelist group name.

A variable can be a member of more than one namelist group.

A variable must have its type, type parameters, and shape specified previously
in the same scoping unit, or it must be determined by implicit typing rules. If a
variable is typed by the implicit typing rules, its appearance in any subsequent
type declaration statement must confirm the implicit type and type parameters.
The following is an example of a NAMELIST statement:

NAMELIST /N_LIST/ A, B, C

5.10 Storage Association

Generally, the physical storage units or storage order for data objects cannot be
specified. However, the COMMON, EQUIVALENCE, and SEQUENCE statements
provide sufficient control over the order and layout of storage units to permit
data to share storage units.

The COMMON statement provides a means of sharing data between program
units. The EQUIVALENCE statement provides a means whereby two or more
objects can share the same storage units.

Fortran modules, pointers, allocatable arrays, and automatic data objects
provide additional tools for sharing data and managing storage. The SEQUENCE
statement defines a storage order for structures. This permits structures to
appear in common blocks and be equivalenced. The SEQUENCE statement can
appear only in derived-type definitions to define sequence types. The
components of a sequence type have an order in storage sequences that is the
order of their appearance in the type definition.

5.10.1 Storage Units

Fortran includes numeric and character storage units for numeric and character
data. The nondefault types (user-defined types and pointers), however, are
stored in unspecified storage units. These unspecified storage units are used for
pointers, objects of nondefault type, and structures that contain components
that are of nondefault types or are pointers. This unit is different for each
different sort of object. A pointer occupies a single unspecified storage unit that
is different from that of any nonpointer object and can be different for each
combination of type, type parameters, and rank.

174 007–3692–004

Declarations [5]

There are two kinds of structures, sequence structures and nonsequence
structures, depending on whether or not the type definition contains a
SEQUENCE statement. A nonsequence structure occupies a single unspecified
storage unit that is different for each type. The three kinds of sequence
structures are as follows:

• Numeric sequence structures (containing only numeric and logical entities of
default kind)

• Character sequence structures (containing only character entities)

• Sequence structures (containing a mixture of components including objects
that occupy numeric, character, and unspecified storage units)

Table 7, page 175, lists objects of various types and attributes and the storage
units they occupy.

Table 7. Types, attributes, and storage

Types and attributes of object Storage units

Default integer 1 numeric

Default real 1 numeric

Logical 1 numeric

Double precision 2 numeric

Default complex 2 numeric

Character of length 1 1 character

Character of length s s characters

Nondefault integer 1 unspecified

Real other than default real or double precision 1 unspecified

Nondefault complex 1 unspecified

Nonsequence structure 1 unspecified

Numeric sequence structure n numeric, where n is the
number of numeric storage
units the structure occupies

007–3692–004 175

Fortran Language Reference Manual, Volume 1

Types and attributes of object Storage units

Character sequence structure n characters, where n is the
number of character
storage units the structure
occupies

Sequence structure The sum of the storage
sequences of all the
ultimate components of the
structure.

Any type with the POINTER attribute 1 unspecified

Any intrinsic or sequence type with the
DIMENSION attribute

The size of the array times
the number of storage
units for the type (will
appear in array element
order)

Any nonintrinsic or nonsequence type with the
DIMENSION attribute

One unspecified storage
unit for each element of
the array

Any type with the POINTER attribute and the
DIMENSION attribute

1 unspecified

5.10.2 Storage Sequence

A storage sequence is an ordered sequence of storage units. The storage units can
be elements in an array, characters in a character variable, components in a
sequence structure, or variables in a common block. A sequence of storage
sequences forms a composite storage sequence. The order of the storage units
in such a composite sequence is the order of the units in each constituent taken
in succession, ignoring any zero-sized sequences.

Storage is associated when the storage sequences of two different objects have
some storage in common. This permits two or more variables to share the same
storage. Two objects are totally associated if they have the same storage
sequence; two objects are partially associated if they share some storage but are
not totally associated.

176 007–3692–004

Declarations [5]

5.10.3 EQUIVALENCE Statement

To indicate that two or more variables will share storage, they can be placed in
an equivalence group in an EQUIVALENCE statement. If the objects in an
equivalence group have different types or type parameters, no conversion or
mathematical relationship is implied. If a scalar and an array are equivalenced,
the scalar does not have array properties and the array does not have the
properties of a scalar. The format of the EQUIVALENCE statement is defined as
follows:

equivalence_stmt is EQUIVALENCE equivalence_set_list

equivalence_set is (equivalence_object, equivalence_object_list)

equivalence_object is variable_name

or array_element

or substring

An equivalence object must not be one of the following items:

• A dummy argument

• A Fortran pointer

• An allocatable array

• A structure containing a pointer at any level

• An automatic data object

• A function name, result name, or entry name

• A named constant

• A structure component

• A Cray pointee

• An object made accessible by USE association.

• A subobject of any of the preceding

• An object with the TARGET attribute.

An equivalence group list must contain at least two items.

007–3692–004 177

Fortran Language Reference Manual, Volume 1

Subscripts and substring ranges must be integer initialization expressions. A
substring cannot have a length of zero.

If an equivalence object is of type default integer, default real, double-precision
real, default complex, default logical, or numeric sequence type, all objects in
the set must be of these types.

If an equivalence object is of type character or character sequence type, all
objects in the set must be type character. The lengths do not need to be the
same.

If an equivalence object is of sequence type other than numeric or character
sequence type, all objects in the set must be of the same type.

ANSI/ISO: The CF90 and MIPSpro 7 Fortran 90 compilers allow
equivalencing of character data with noncharacter data. The Fortran standard
does not address this. It is recommended that you do not perform
equivalencing in this manner, however, because alignment and padding
differs across platforms, thus rendering your code less portable.

If an equivalence object is of intrinsic type other than default integer, default
real, double-precision real, default complex, or default logical, all objects in the
set must be of the same type with the same kind type parameter value.

The use of an array name unqualified by a subscript list in an equivalence set
specifies the first element of the array; that is, A means the first element of A.

An EQUIVALENCE statement must not specify that the same storage unit is to
occur more than once in a storage sequence. For example, the following is
illegal because it would indicate that storage for X(2) and X(3) is shared:

EQUIVALENCE (A, X(2)), (A, X(3))

An EQUIVALENCE statement must not specify the sharing of storage units
between objects declared in different scoping units.

An EQUIVALENCE statement specifies that the storage sequences of the data
objects in an equivalence set are storage associated. Any nonzero-sized
sequences in the set have the same first storage unit, and any zero-sized
sequences are storage associated with one another and with the first storage
unit of any nonzero-sized sequences. This causes storage association of the
objects in the group and may cause storage association of other data objects.

Example 1: The following code causes the alignment illustrated in Figure 7:

CHARACTER(LEN = 4) :: A, B

CHARACTER(LEN = 3) :: C(2)

178 007–3692–004

Declarations [5]

EQUIVALENCE (A, C(1)), (B, C(2))

A(1:1) A(2:2) A(3:3) A(4:4)

B(1:1) B(2:2) B(3:3) B(4:4)

C(1)(3:3) C(2)(1:1) C(2)(2:2) C(2)3:3)C(1)(1:1) C(1)(2:2)

a10633

Figure 7. Character alignment example

As a result, the fourth character of A, the first character of B, and the first
character of C(2) all share the same character storage unit.

Example 2: Figure 8, page 179, illustrates alignment of the following two
numeric arrays:

REAL, DIMENSION(6) :: X, Y
EQUIVALENCE (X(5), Y(3))

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(3) Y(4) 5(5) Y(6)

a10634

Figure 8. Numeric array alignment example

5.10.4 COMMON Statement

The COMMON statement establishes blocks of storage called common blocks and
specifies objects that are contained in the blocks. Two or more program units
can share this space and thus share the values of variables stored in the space.
Thus, the COMMON statement provides a global data facility based on storage
association. Common blocks can be named, in which case they are called named
common blocks, or they can be unnamed, in which case they are called blank
common.

007–3692–004 179

Fortran Language Reference Manual, Volume 1

Common blocks can contain mixtures of storage units and can contain
unspecified storage units; however, if a common block contains a mixture of
storage units, every declaration of the common block in the program must
contain the same sequence of storage units, thereby matching types, kind type
parameters, and attributes (DIMENSION and POINTER). The format of the
COMMON statement is defined as follows:

common_stmt is COMMON [/ [common_block_name] /] common_block_object_list
[[,] / [common_block_name] / common_block_object_list] ...

common_block_object is variable_name [(explicit_shape_spec_list)]

A common_block_object must not be one of the following items:

• A dummy argument

• An allocatable array

• An automatic object

• A function name, result name, or entry name

• A USE associated variable

• A HOST associated variable

• A sequence structure with default initialization

• A nonsequence structure

The appearance of two slashes with no common block name between them
declares that the objects that follow are in blank common.

A common block name or an indication of blank common can appear more
than once in one or more COMMON statements in the same scoping unit. The
object list following each successive block name or blank common indication is
treated as a continuation of the previous object list.

A variable can appear in only one common block within a scoping unit.

If a variable appears with an explicit-shape specification list, it is an array, and
each bound must be a constant specification expression.

Only a named common block can be saved. Individual variables in the
common block cannot be saved.

180 007–3692–004

Declarations [5]

For each common block, a common block storage sequence is formed. It consists
of the sequence of storage units of all the variables listed for the common block
in the order of their appearance in the common block list. The storage sequence
may be extended (on the end) to include the storage units of any variable
equivalenced to a variable in the common block. Data objects storage associated
with a variable in a common block are considered to be in that common block.
The size of a common block is the size of its storage sequence including any
extensions of the sequence resulting from equivalence association.

Within an executable program, the common block storage sequences of all
nonzero-sized common blocks with the same name have the same first storage
unit. Zero-sized common blocks are permitted. All zero-sized common blocks
with the same name are storage associated with one another. The same is true
for all blank common blocks except that because they can be of different sizes,
it is possible for a zero-sized blank common block in one scoping unit to be
associated with the first storage unit of a nonzero-sized blank common block in
another scoping unit. In this way, many subprograms can use the same storage.
They can specify common blocks to communicate global values or to reuse and
conserve storage. USE association or HOST association can cause these
associated objects to be accessible in the same scoping unit.

A nonpointer object of type default integer, default real, double-precision real,
default complex, default logical, or numeric sequence type must become
associated with only nonpointer objects of these types.

A nonpointer object of type character or character sequence must become
associated with only nonpointer objects of these types.

If an object of numeric sequence or character sequence type appears in a
common block, it is as if the individual components were enumerated in order
directly in the common block object list.

A nonpointer object of sequence type other than numeric or character sequence
type must become associated only with nonpointer objects of the same type.

A nonpointer object of intrinsic type other than default integer, default real,
double precision real, default complex, default logical, or character must
become associated only with nonpointer objects of the same type with the same
kind type parameter value.

A pointer must become associated only with pointers of the same type, type
parameters, and rank.

007–3692–004 181

Fortran Language Reference Manual, Volume 1

Note: An object with the TARGET attribute can become storage associated
only with another object that has the TARGET attribute and the same type
and type parameters.

The CF90 and MIPSpro 7 Fortran 90 compilers treat named common blocks and
blank common blocks identically, as follows:

• Variables in blank common and variables in named common blocks can be
initialized.

• Named common blocks and blank common are always saved.

• Named common blocks of the same name and blank common can be of
different sizes in different scoping units.

ANSI/ISO: The Fortran standard lists the following differences between
blank common and named common blocks:

– Variables in blank common must not be initially defined in type
declaration statements or DATA statements.

– A named common block is not saved unless it is named in a SAVE
statement.

– Named common blocks of the same name must be of the same size in
all scoping units.

Consider the code in the following example:

SUBROUTINE FIRST

REAL B(2)

COMPLEX C
LOGICAL FLAG

TYPE COORDINATES

SEQUENCE

REAL X, Y

LOGICAL Z_O ! ZERO ORIGIN?

END TYPE COORDINATES
TYPE(COORDINATES) P

COMMON /REUSE/ B, C, FLAG, P

REAL MY_VALUES(100)

CHARACTER(LEN = 20) EXPLANATION
COMMON /SHARE/ MY_VALUES, EXPLANATION

SAVE /SHARE/

182 007–3692–004

Declarations [5]

REAL, POINTER :: W(:, :)

REAL, TARGET, DIMENSION(100, 100) :: EITHER, OR
INTEGER(SHORT) :: M(2000)

COMMON /MIXED/ W, EITHER, OR, M

. . .

END SUBROUTINE

SUBROUTINE SECOND

INTEGER, PARAMETER :: SHORT = 2
INTEGER I(8)

COMMON /REUSE/ I

REAL MY_VALUES(100)

CHARACTER(LEN = 20) EXPLANATION
COMMON /SHARE/ MY_VALUES, EXPLANATION

SAVE /SHARE/

REAL, POINTER :: V(:)

REAL, TARGET, DIMENSION(100000) :: ONE, ANOTHER
INTEGER(SHORT) :: M(2000)

COMMON /MIXED/ V, ONE, ANOTHER, M ! ILLEGAL

. . .

END SUBROUTINE

Common block REUSE has a storage sequence of 8 numeric storage units. It is
used to conserve storage. The storage referenced in subroutine FIRST is
associated with the storage referenced in subroutine SECOND, as follows:

B(1) B(2) C FLAG X Y Z_O

I(1) I(2) I(5) I(6) I(7) I(8)I(3) I(4)

a10635

Figure 9. Storage of REUSE in FIRST and SECOND

The Fortran standard does not guarantee that the storage is actually retained
and reused because, in the absence of a SAVE attribute for REUSE, some
compilers can release the storage when either of the subroutines completes

007–3692–004 183

Fortran Language Reference Manual, Volume 1

execution. The CF90 and MIPSpro 7 Fortran 90 compilers treat named common
blocks as entities that are contained in a SAVE statement.

Common block SHARE contains both numeric and character storage units and is
used to share data between subroutines FIRST and SECOND.

The declaration of common block MIXED in subroutine SECOND is illegal
because it does not have the same sequence of storage units as the declaration
of MIXED in subroutine FIRST. The array pointer W in FIRST has two
dimensions; the array pointer V in SECOND has only one. With common blocks,
it is the sequence of storage units that must match, not the names of variables.

5.10.5 Restrictions on Common and Equivalence

An EQUIVALENCE statement must not cause two different common blocks to
become associated and must not cause a common block to be extended by
adding storage units preceding the first storage unit of the common block. For
example, the following code is legal and results in the alignment illustrated in
Figure 10, page 184:

COMMON A(5)

REAL B(5)

EQUIVALENCE (A(2), B(1))

A(1) A(2) A(5)A(3) A(4)

B(1) B(2) B(5)B(3) B(4)

a10636

Figure 10. Alignment resulting from correct code

On the other hand, the following code is not legal because it would place B(1)
ahead of A(1), as is illustrated in Figure 11:

EQUIVALENCE (A(1), B(2))

184 007–3692–004

Declarations [5]

A(1) A(2) A(5)A(3) A(4)

B(1) B(2) B(5)B(3) B(4)

a10637

Figure 11. Alignment resulting from incorrect code

COMMON and EQUIVALENCE statements can appear in a module. The name of a
public data object from a module must not appear in a COMMON or
EQUIVALENCE statement in any scoping unit that has access to the data object.

EQUIVALENCE association must not cause a derived-type object with default
initialization to be associated with an object in a common block.

007–3692–004 185

Using Data [6]

Chapter 5, page 117, explains how data objects are created and how their
attributes are specified. This chapter explains how these objects can be used.
The appearance of the name or designator where its value is required is a
reference to the object. When an object is referenced, it must be defined; that is,
it must have a value. The reference makes use of the value. Consider the
following two statements:

A = 1.0
B = A + 4.0

In the first statement, the constant value 1.0 is assigned to the variable A. It
does not matter whether A was previously defined with a value or not; it now
has a value and can be referenced in an executable statement. In the second
statement, A is referenced; its value is obtained and added to the constant 4.0
to obtain a value that is then assigned to the variable B. The appearances of A in
the first statement and B in the second statement are not considered to be
references because their values are not required. The appearance of A in the
second statement is a reference.

A data object can be a constant or a variable. Variables and constants can be
scalar objects (with a single value) or arrays (with any number of values, all of
the same type). Strictly speaking, there is no such thing as an array constant.
An array constructor made up of all constant values is a constant expression, not
an array constant. Also note that a derived type is a scalar value. Similar to an
array constructor, a derived type constructor composed of all constant values is
a constant expression, not a structure constant.

Arrays are said to be dynamic if their size can change. Automatic arrays are
discussed in Section 5.8, page 171; they are created on entry to a procedure, and
their sizes are determined at that time. Allocatable arrays or pointer arrays can
change size as well. The declared rank cannot change, but the extents of the
dimensions may change with each reallocation or pointer assignment.

If a variable or constant is a portion of another object, it is called a subobject. A
subobject can be one of the following items:

• An array element

• An array section

• A structure component

007–3692–004 187

Fortran Language Reference Manual, Volume 1

• A substring

A variable is referenced by its name, whereas a subobject is referenced by a
designator. A designator indicates the portion of an object that is being
referenced. Each subobject is considered to have a parent and is a portion of the
parent. Each of the subobjects is described in this chapter.

This chapter also explains how to create and release pointers and allocatable
arrays by using the ALLOCATE and DEALLOCATE statements. In addition, you
can disassociate pointers from any target object by using the NULLIFY
statement.

A reference to a variable or subobject is called a data reference. Guidelines exist
for determining whether a particular data reference is classified as a character
string, character substring, structure component, array, array element, or array
section. These classifications are perhaps of more interest to compiler writers
than to users of the language, but knowing how a data reference is classified
makes it clearer which rules and restrictions apply to the reference, and easier
to understand some of the explanations for the formation of expressions.
Briefly, character strings and substrings must be of type character. Arrays have
the DIMENSION attribute. Some data references can be classified as both
structure components and array sections. In general, if a data reference contains
a percent sign (%), it is a structure component, but its actual classification can be
determined by other factors such as a section subscript or the rightmost element
of the reference. If a substring range appears in a data reference, it must appear
at the right end of the reference; the reference is considered to be a substring
unless some component of the reference is an array section, in which case the
data reference is considered to be an array section that just happens to have
elements that are substrings. For a component reference to be classified as an
array element, every component must have rank zero and a subscript list must
appear at the right end of the reference. Section 6.1, page 188, through Section
6.4.5, page 197, contain many examples that demonstrate how these guidelines
for classification apply.

6.1 Constants and Variables

A constant has a value that cannot change; it can be a literal constant or a
named constant (parameter). As explained in Chapter 4, page 67, each of the
intrinsic types has a form that specifies the type, type parameters, and value of
a literal constant of the type. For user-defined types, there is a structure
constructor to specify values of the type. If all of the components of a structure
constructor are constants, the resulting derived-type value is a constant
expression. Array constructors are used to form array values of any intrinsic or

188 007–3692–004

Using Data [6]

user-defined type. If all array elements are constant values, the resulting array
is a constant array expression. A reference to a constant is always permitted.

A variable has a name such as A or a designator such as B(I), and may or may
not have a value. If it does not have a value, it must not be referenced.
Variables are defined as follows:

variable is scalar_variable_name

or array_variable_name

or subobject

subobject is array_element

or array_section

or structure_component

or substring

logical_variable is variable

default_logical_variable is variable

char_variable is variable

default_char_variable is variable

int_variable is variable

default_int_variable is variable

A logical_variable must be of type logical, and a default_logical_variable must be of
type default logical. A char_variable must be of type character and a
default_char_variable must be of type default character. The CF90 and MIPSpro 7
Fortran 90 compilers do not support any nondefault character types. An
int_variable must be of type integer and a default_int_variable must be of type
default integer.

Variables can be of any type, except for Boolean (typeless). There are contexts in
which a variable must be of a certain type. In some of these cases, terms, such
as logical_variable, character_variable, or Cray pointer, provide precise limitations.

ANSI/ISO: The Fortran standard does not specify Boolean (typeless)
constants or Cray pointers.

A subobject with a constant parent is not a variable.

007–3692–004 189

Fortran Language Reference Manual, Volume 1

A single object of any of the intrinsic or user-defined types is a scalar. A set of
scalar objects, all of the same type and type parameters, can be arranged in a
pattern involving columns, rows, planes, and higher-dimensioned
configurations to form an array. An array has a rank between one and seven. A
scalar has rank zero. In simple terms, an array is an object with the DIMENSION
attribute; a scalar is not an array. For example:

TYPE PERSON
INTEGER AGE

CHARACTER(LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
CHARACTER*(20) DISTRICT, STATIONS(10)

The following data references are classified as indicated by the comments on
each line:

DISTRICT ! character string

DISTRICT(1:6) ! substring

FIRECHIEF%AGE ! structure component
FIREMEN%AGE ! array of integers

STATIONS ! array of character strings

STATIONS(1) ! array element (character string)

STATIONS(1:4) ! array section of character strings

The following code segment shows that a subobject can have a constant parent:

CHARACTER(*), PARAMETER :: MY_DISTRICT = "DISTRICT 13"
CHARACTER(2) DISTRICT_NUMBER

DISTRICT_NUMBER = MY_DISTRICT(10:11)

DISTRICT_NUMBER has the value 13.

6.2 Substrings

A character string consists of zero or more characters. Even though it is made up
of individual characters, a character string is considered to be scalar. As with
any data type, it is possible to declare an array of character strings, all of the
same length.

A substring is a contiguous portion of a character string that has a starting point
and an ending point within the character string. It is possible to reference a
substring of a character variable or constant.

190 007–3692–004

Using Data [6]

Substrings are defined as follows:

substring is parent_string (substring_range)

parent_string is scalar_variable_name

or array_element

or scalar_structure_component

or scalar_constant

substring_range is [scalar_int_expr] : [scalar_int_expr]

The parent_string of a substring must be of type character. The substring is of
type character.

The scalar_int_expr at the left in the substring_range is the starting position. The
scalar_int_expr at the right in the substring_range is the ending position.

A substring is the contiguous sequence of characters within the string, beginning
with the character at the starting position and ending at the ending position. If
the starting position is omitted, the default is 1; if the ending position is
omitted, the default is the length of the character string.

The length of a character string or substring can be 0, but not a negative
number. Zero-length strings result when the starting position is greater than the
ending position. The formula for calculating the length of a string is as follows:

MAX (ending_position - starting_position + 1, 0)

The first character of a parent string is at position 1 and the last character is at
position n where n is the length of the string. The starting position of a
substring must be greater than or equal to 1 and the ending position must be
less than or equal to the length n, unless the length of the substring is 0. If the
parent string is of length 0, the substring must be of length 0.

Example 1:

CHARACTER*(14) NAME

NAME = "John Q. Public"
NAME(1:4) = "Jane"

PRINT *, NAME(9:14)

In example 1, NAME is a scalar character variable, a string of 14 characters, that
is assigned the value John Q. Public by the first assignment statement.

007–3692–004 191

Fortran Language Reference Manual, Volume 1

NAME(1:4) is a substring of four characters that is reassigned the value Jane
by the second assignment statement, leaving the remainder of the string NAME
unchanged; the string NAME then becomes Jane Q. Public. The PRINT
statement prints the characters in positions 9 through 14, in this case, the
surname, Public.

Example 2:

Assume the following definition and declarations:

TYPE PERSON

INTEGER AGE
CHARACTER(LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)

CHARACTER(20) DISTRICT, STATIONS(10)

The following are all substrings:

STATIONS(1)(1:5) ! array element as parent string

FIRECHIEF%NAME(4:9) ! structure component as parent string

DISTRICT(7:14) ! scalar variable as parent string
’0123456789’(N:N+1) ! character constant as parent string

In example 2, the reference STATIONS(:)(1:5) is permitted. It is an array
whose elements are substrings, but it is not considered to be a substring
reference. Even though the entire array is indicated, this reference is considered
to be an array section reference. The description is in Section 6.4.5, page 197.
STATIONS(1:5)(1:5) is also permitted. It is an array section whose elements
are substrings. Whenever an array is constructed of character strings and any
part of it (other than the whole object) is referenced, an array section subscript
must appear before the substring range specification, if any. Otherwise, the
substring range specification will be treated as an array section specification
because the two have the same form. STATIONS(1:5) is an array section
reference that references the entire character strings of the first five elements of
STATIONS. The last line of the example is a substring where the parent is a
constant and the starting and ending positions are variable.

6.3 Structure Components

A structure is an aggregate of components of intrinsic or derived types. It is
itself an object of derived type. The types and attributes of the components are
specified in the type definition; they can be scalars or arrays. Each structure has

192 007–3692–004

Using Data [6]

at least one component. There can be arrays of structures. In example 2 (see
Section 6.2, page 190), FIRECHIEF is a structure; FIREMEN is an array of
structures of type PERSON.

A component of a structure is referenced by placing the name of the component
after the name of the parent structure, separated by a percent sign (%). For
example, FIRECHIEF % NAME references the character string component of the
variable FIRECHIEF of type PERSON.

A structure component is a data reference and is defined as follows:

data_ref is part_ref [% part_ref] ...

part_ref is part_name [(section_subscript_list)]

structure_component is data_ref

For a data reference to be considered a structure component reference, there
must be more than one part reference and the rightmost part reference must be
a part name. If the rightmost component is of the following form, the reference
is considered to be an array section or array element (the simplest form of a
section subscript list is a subscript list):

part_name (section_subscript_list)

The rules for forming a section_subscript_list and a subscript are provided in
Section 6.4, page 195.

In a data reference, each part name except the rightmost must be of derived
type.

In a data reference, each part name except the leftmost must be the name of a
component of the derived-type definition of the type of the preceding part
name.

In a part reference containing a section subscript list, the number of section
subscripts must equal the rank of the part name.

It is possible to create a structure with more than one array part, but in a data
reference to the structure, there must not be more than one part reference with
nonzero rank.

In a data reference, a part name to the right of a part reference with nonzero
rank must not have the POINTER attribute. It is possible to declare an array of

007–3692–004 193

Fortran Language Reference Manual, Volume 1

structures that have a pointer as a component, but it is not possible to reference
such an object as an array.

The rank of a part reference consisting of just a part name is the rank of the
part name. The rank of a part reference of the following form is the number of
subscript triplets and vector subscripts in the list:

part_name (section_subscript_list)

The rank is less than the rank of the part name if any of the section subscripts
are subscripts other than subscript triplets or vector subscripts. The shape of a
data reference is the shape of the part reference with nonzero rank, if any;
otherwise, the data reference is a scalar and has rank zero.

The parent structure in a data reference is the data object specified by the
leftmost part name. If the parent object has the INTENT, TARGET, or
PARAMETER attribute, the structure component has the attribute. The type and
type parameters of a structure component are those of the rightmost part name.
A structure component is a pointer only if the rightmost part name has the
POINTER attribute. Typically, an object cannot have both the TARGET and
POINTER attributes. However, a structure that has the TARGET attribute can
contain components that have the POINTER attribute.

Example 1: Assume the following type definition and structure declarations:

TYPE PERSON

INTEGER AGE

CHARACTER(LEN = 40) NAME

END TYPE PERSON
. . .

TYPE(PERSON) FIRECHIEF, FIREMEN(50)

In this example, structure components are as follows:

FIRECHIEF%AGE ! scalar component of scalar parent

FIREMEN(J)%NAME ! component of array element parent

FIREMEN(1:N)%AGE ! component of array section parent

Example 2: If a derived-type definition contains a component that is of derived
type, then a reference to an ultimate component can contain more than two part
references as do the references in the first two PRINT statements in the
following example:

TYPE REPAIR_BILL

REAL PARTS
REAL LABOR

194 007–3692–004

Using Data [6]

END TYPE REPAIR_BILL

. . .
TYPE VEHICLE

CHARACTER(LEN = 40) OWNER

INTEGER MILEAGE

TYPE(REPAIR_BILL) COST

END TYPE VEHICLE

. . .
TYPE(VEHICLE) BLACK_FORD, RED_FERRARI

. . .

PRINT *, BLACK_FORD%COST%PARTS

PRINT *, RED_FERRARI%COST%LABOR

PRINT *, RED_FERRARI%OWNER

6.4 Arrays

An array is a collection of scalar elements of any intrinsic or derived type. An
object of any type that is specified to have the DIMENSION attribute is an array.
All of the elements of an array must have the same type and kind parameter.
There can be arrays of structures. The value returned by a function can be an
array. The appearance of an array name or designator has no implications for
the order in which the individual elements are referenced unless array element
ordering is specifically required.

6.4.1 Array Terminology

An array consists of elements that extend in one or more dimensions to
represent columns, rows, planes, and so on. There can be up to seven
dimensions in an array declaration. The number of dimensions in an array is
called the rank of the array. The number of elements in a dimension is called the
extent of the array in that dimension. The shape of an array is determined from
the rank and the extents; to be precise, the shape is a vector where each element
of the vector is the extent in the corresponding dimension. The size of an array is
the product of the extents; that is, it is the total number of elements in the array.

Example 1: Consider the following statement:

REAL X(0:9, 2)

The rank of X is 2 because X has two dimensions. The extent of the first
dimension is 10; the extent of the second dimension is 2. The shape of X is 10

007–3692–004 195

Fortran Language Reference Manual, Volume 1

by 2, that is, a vector of two values, (10, 2). The size is 20, the product of the
extents.

An object can be given the DIMENSION attribute in a type declaration or in one
of several other specification statements.

Example 2: Consider the following statements show some ways of declaring
that A has rank 3 and shape (10, 15, 3):

DIMENSION A(10, 15, 3)

REAL, DIMENSION(10, 15, 3) :: A

REAL A(10, 15, 3)

COMMON A(10, 15, 3)

TARGET A(10, 15, 3)

Arrays of nonzero size have a lower and upper bound for each dimension. The
lower bound is the smallest subscript value for a dimension; the upper bound is
the largest subscript value for that dimension. The default lower bound is 1 if
the lower bound is omitted in the declaration. Array bounds can be positive,
zero, or negative.

Example 3: Consider the following statement:

REAL Z(-3:10, 12)

The first dimension of Z ranges from -3 to 10, that is, -3, -2, -1, 0, 1, 2, . . .,
9, 10. The lower bound is -3; the upper bound is 10. In the second dimension,
the lower bound is 1; the upper bound is 12.

The bounds for array expressions are described in Section 7.2.8.4, page 252.

6.4.2 Whole Arrays

Some arrays are named. The name is either an array variable name or the name
of a constant. If the array name appears without a subscript list or section
subscript list, all of the elements of the array are referenced and the reference is
considered to be a whole array reference.

6.4.3 Array Elements

An array element is one of the scalar elements that make up an array. A
subscript list is used to indicate which element is referenced. Assume that A is
declared to be a one-dimensional array, as follows:

REAL, DIMENSION(10) :: A

196 007–3692–004

Using Data [6]

A(1) refers to the first element, A(2) to the second, and so on. The number in
the parentheses is the subscript that indicates which scalar element is referenced.
Assume that B is declared to be a seven-dimensional array, as follows:

REAL B(5, 5, 5, 5, 4, 7, 5)

B(2,3,5,1,3,7,2) refers to one scalar element of B, indexed by a subscript
in each dimension. The set of numbers that indicate the position along each
dimension in turn (in this case, 2,3,5,1,3,7,2) is called a subscript list.

6.4.4 Array Sections

Sometimes only a portion of an array is needed for a calculation. It is possible
to refer to a selected portion of an array as an array; this portion is called an
array section. A parent array is the whole array from which the portion that
forms the array section is selected.

An array section is specified by an array variable name and a section subscript
list that consists of subscripts, triplet subscripts, or vector subscripts. At least
one subscript must be a triplet or vector subscript; otherwise, the reference
indicates an array element, not an array section. The following example uses a
section subscript to create an array section:

REAL A(10)

. . .

A(2:5) = 1.0

The parent array A has 10 elements. The array section consists of the elements
A(2), A(3), A(4), and A(5) of the parent array. The section A(2:5) is an
array itself and the value 1.0 is assigned to all four of its elements.

6.4.5 Format of Array Elements and Array Sections

The format of an array element is a data reference, which is defined as follows:

array_element is data_ref

For a data reference to be classified as an array section, exactly one part
reference must have nonzero rank, and either the final part reference must have
a section subscript list with nonzero rank or another part reference must have
nonzero rank.

007–3692–004 197

Fortran Language Reference Manual, Volume 1

The format of an array section is a data reference followed by an optional
substring range enclosed in parentheses. This is defined as follows:

array_section is data_ref [(substring_range)]

The format of a substring range is found in Section 6.2, page 190.

A part name in a data reference can be followed by an optional section
subscript list, as follows:

subscript is scalar_int_exp

section_subscript is subscript

or subscript_triplet

or vector_subscript

subscript_triplet is [subscript] : [subscript] [: stride]

stride is scalar_int_expr

vector_subscript is int_expr

Each subscript and stride must be a scalar_int_expr. A vector_subscript must be an
integer array expression of rank one.

For a data reference to be classified as an array element, every part reference
must have rank zero and the last part reference must contain a subscript list.

In an array section that is a data reference followed by a substring range, the
rightmost part name must be of type character.

In an array section of an assumed-size array, the second subscript must not be
omitted from a subscript triplet in the last dimension.

A section subscript must be present for each dimension of an array. If any
section subscript is simply a subscript, the section will have a lesser rank than
its parent.

If any part of a reference is an array section, the reference is considered to be an
array section reference. In a data reference, there may be at most one part with
rank greater than zero.

198 007–3692–004

Using Data [6]

Examples of array elements and array sections are as follows:

ARRAY_A(1,2) ! array element
ARRAY_A(1:N:2,M) ! rank-one array section

ARRAY_B(:,:,:)(2:3) ! array. elements are substrings of

! of length 2

SCALAR_A%ARRAY_C(L) ! array element

SCALAR_A%ARRAY_C(1:L) ! array section
SCALAR_B%ARRAY_D(1:N)%SCALAR_C ! array section

ARRAY_E(1:N:2)%ARRAY_F(I,J)%STRING(K)(:) ! array section

In the last example above, each component of the type definition is an array
and the object ARRAY_E is an array. The reference is valid because each
component in the reference is scalar. The substring range is not needed because
it specifies the entire string; however, it serves as a reminder that the last
component is of type character.

The following examples demonstrate the allowable combinations of scalar and
array parents with scalar and array components.

TYPE REPAIR_BILL
REAL PARTS(20)

REAL LABOR

END TYPE REPAIR_BILL

TYPE(REPAIR_BILL) FIRST

TYPE(REPAIR_BILL) FOR_1990(6)

Scalar parent:

1. FIRST % LABOR ! structure component

2. FIRST % PARTS(I) ! array element

3. FIRST % PARTS ! component (array-valued)

4. FIRST % PARTS(I:J) ! array section

5. FOR_1990(K) % LABOR ! structure component

6. FOR_1990(K) % PARTS(I) ! array element

7. FOR_1990(K) % PARTS ! component (array-valued)

8. FOR_1990(K) % PARTS(I:J) ! array section

Array parent:

9. FOR_1990 % LABOR ! component and array section
10. FOR_1990 % PARTS(I) ! array section

11. FOR_1990 % PARTS ! ILLEGAL

12. FOR_1990 % PARTS(I:J) ! ILLEGAL

007–3692–004 199

Fortran Language Reference Manual, Volume 1

13. FOR_1990(K:L) % LABOR ! component and array section
14. FOR_1990(K:L) % PARTS(I) ! array section

15. FOR_1990(K:L) % PARTS ! ILLEGAL

16. FOR_1990(K:L) % PARTS(I:J) ! ILLEGALText goes here

References 11, 12, 15, and 16 are illegal because only one component may be
of rank greater than zero. References 3 and 7 are compact (contiguous) array
objects and are classified as array-valued structure components. References 9,
10, 13, and 14 are noncontiguous array objects and are classified as sections.
These distinctions are important when such objects are actual arguments in
procedure references.

6.4.5.1 Subscripts

In an array element reference, each subscript must be within the bounds for
that dimension. A subscript can appear in an array section reference. Whenever
this occurs, it decreases the rank of the section by one less than the rank of the
parent array. A subscript used in this way must be within the bounds for the
dimension. The CF90 and MIPSpro 7 Fortran 90 compilers allow overindexing,
which may produce incorrect results because of optimization. For information
on overindexing and optimization, see the Fortran Language Reference Manual,
Volume 3.

ANSI/ISO: The Fortran standard does not address overindexing.

6.4.5.2 Subscript Triplets

The first subscript in a subscript triplet is the lower bound; the second is the
upper bound. If the lower bound is omitted, the declared lower bound is used.
If the upper bound is omitted, the declared upper bound is used. The stride is
the increment between successive subscripts in the sequence. If it is omitted, it
is assumed to be 1. The stride must not be 0. If the subscripts and stride are
omitted and only the colon (:) appears, the entire declared range for the
dimension is used.

When the stride is positive, an increasing sequence of integer values is specified
from the first subscript in increments of the stride, up to the last value that is
not greater than the second subscript. The sequence is empty if the first
subscript is greater than the second. If any subscript sequence is empty, the
array section is a zero-sized array, because the size of the array is the product of
its extents. For example, given the array declared A(5,4,3) and the section

200 007–3692–004

Using Data [6]

A(3:5,2,1:2), the array section is of rank 2 with shape (3,2) and size 6.
The elements are as follows:

A(3,2,1) A(3,2,2)
A(4,2,1) A(4,2,2)

A(5,2,1) A(5,2,2)

When the stride is negative, a decreasing sequence of integer values is specified
from the first subscript, in increments of the stride, down to the last value that
is not less than the second subscript. The sequence is empty if the second
subscript is greater than the first, and the array section is a zero-sized array. For
example, given the array declared B(10) and the section B (9:4:-2), the array
section is of rank 1 with shape (3) and size 3. The elements are as follows:

B(9) B(7) B(5)

However, array section B(9:4) is a zero-sized array.

A subscript in a subscript triplet is not required to be within the declared
bounds for the dimension as long as all subscript values selected by the triplet
are within the declared bounds. For example, given an array declared B(10),
section B(3:11:7) is permitted. It has rank 1 with shape (2) and size 2. The
elements are as follows:

B(3) B(10)

6.4.5.3 Vector Subscripts

While subscript triplets specify values in increasing or decreasing order with a
specified stride to form a regular pattern, vector subscripts specify values in
arbitrary order. The values must be within the declared bounds for the
dimension. A vector subscript is a rank-one array of integer values used as a
section subscript to select elements from a parent array.

INTEGER J(3)

REAL A(30)

. . .

J = (/ 8, 4, 7 /)

A(J) = 1.0

The last assignment statement assigns the value 1.0 to A(4), A(7), and A(8).
The section A(J) is a rank-one array with shape (3) and size 3.

If J were assigned (/ 4, 7, 4 /) instead, the element A(4) would be
accessed in two ways: as A(J(1)) and as A(J(3)). Such an array section is

007–3692–004 201

Fortran Language Reference Manual, Volume 1

called a many-to-one array section. A many-to-one section must not appear on
the left of the equal sign in an assignment statement or as an input item in a
READ statement. The reason is that the result will depend on the order of
evaluation of the subscripts, which is not specified by the language. The results
would not be predictable and the program containing such a statement would
not be portable.

Array sections with vector subscripts are array expressions, so there are places,
such as the following, where array sections with vector subscripts must not
appear:

• As internal files

• As pointer targets

• As actual arguments for INTENT(OUT) or INTENT(INOUT) dummy
arguments

6.4.6 Using Array Elements and Array Sections

Subscripts, subscript triplets, and vector subscripts can be mixed in a single
section subscript list used to specify an array section. A triplet section can
specify an empty sequence (for example 1:0), in which case the resulting
section is a zero-sized array.

Example 1: Assume that B is declared as follows:

REAL B(10, 10, 5)

Section B(1:4:3, 6:8:2, 3) consists of the following four elements:

B(1,6,3) B(1,8,3)
B(4,6,3) B(4,8,3)

The stride along the first dimension is 3, resulting in a subscript-value list of 1
and 4. The stride along the second dimension is 2, resulting in a
subscript-value list of 6 and 8. In the third position there is a subscript that
reduces the rank of the section by 1. The section has shape (2, 2) and size 4.

Example 2: Assume IV is declared as follows:

INTEGER, DIMENSION(3) :: IV = (/ 4, 5, 4 /)

Then the section B(8:9, 5, IV) is a 2 x 3 array consisting of the following
six elements:

202 007–3692–004

Using Data [6]

B(8,5,4) B(8,5,5) B(8,5,4)

B(9,5,4) B(9,5,5) B(9,5,4)

B(8:9, 5:4, IV) is a zero-sized array of rank 3.

6.4.7 Array Element Order

When whole arrays are used as operands in an executable statement, the
indicated operation is performed element-by-element, but no order is implied
for these elemental operations. They can be executed in any order or
simultaneously. Although there is no order of evaluation when whole array
operations are performed, there is an ordering of the elements in an array itself.
An ordering is required for the input and output of arrays and for certain
intrinsic functions such as MAXLOC(3I). The elements of an array form a
sequence whose ordering is called array element order. This is the sequence that
occurs when the subscripts along the first dimension vary most rapidly, and the
subscripts along the last dimension vary most slowly. Thus, for an array
declared as REAL A(3, 2), the elements in array element order are: A(1, 1),
A(2, 1), A(3, 1), A(1, 2), A(2, 2), A(3, 2).

The position of an array element in this sequence is its subscript order value.
Element A(1, 1) has a subscript order value of 1. Element A(1, 2) has a
subscript order value of 4. Figure 12, page 204, shows how to compute the
subscript order value for any element in arrays of rank 1 through 7.

007–3692–004 203

Fortran Language Reference Manual, Volume 1

Rank Explicit shape specifier Subscript list Subscript order value

1

2

3

.

.

.

7

j :k1 1

j :k1 1 , j :k2 2

j :k1 , j :k2 2 , j :k3 31

j :k1 , . . . , j :k7 71

s1

s1, s2

s1, s2 , s3

s1 , s7, . . .

+ (s - j)1 11

+ (s - j)1 11
+ (s - j) x d2 2 1

+ (s - j)1 11
+ (s - j) x d2 2 1

+ (s - j) x d x d3 3 2 1

.

.

.

.

.

.

.

.

.

+ (s - j)1 11
+ (s - j) x d2 2 1

+ (s - j) x d x d3 3 2 1
+ . . .

+ (s - j) x d7 7 6
x d x . . . x d5 1

a10879

Figure 12. Computation of subscript order value

The subscript order of the elements of an array section is that of the array object
that the section represents. That is, given the array A(10) and the section
A(2:9:2) consisting of the elements A(2), A(4), A(6), and A(8), the
subscript order value of A(2) in the array section A(2:9:2) is 1; the subscript
order value of A(4) in the section is 2 and A(8) is 4.

6.5 Pointers and Allocatable Arrays

Fortran provides several dynamic data objects. Automatic objects (arrays and
character strings) are discussed in Section 5.8, page 171. In addition, there are

204 007–3692–004

Using Data [6]

two data attributes that can be used to specify dynamic data objects:
ALLOCATABLE and POINTER. Arrays of any type can have the ALLOCATABLE
attribute; scalars or arrays of any type can have the POINTER attribute. Chapter
5, page 117, described how such objects are declared. This section describes
how space is created for these objects with the ALLOCATE statement, how it can
be released with the DEALLOCATE statement, and how pointers can be
disassociated from any target with the NULLIFY statement. The association
status of a pointer can be defined or undefined; initially (when a pointer is
declared), it is undefined. If it is defined, the pointer can be associated with a
target or disassociated from any target. The target is referenced by the name of
the pointer and is like any other variable in that it is defined when it acquires a
value. Figure 13 shows the various states that a pointer may assume.

undefined

Undefined association status Defined association status,
Undefined target

associated

100

50

25

Defined association status,
Defined target

associated

ALLOCATE (P(3))POINTER P(:)

Defined association status,
Disassociated

disassociated

P = (/25,50,100/)NULLIFY (P)

a10638

Figure 13. States in the lifetime of a pointer

Section 7.5.3, page 285, describes how pointers can be associated with existing
space and how dynamic objects can acquire values.

007–3692–004 205

Fortran Language Reference Manual, Volume 1

6.5.1 ALLOCATE Statement

The ALLOCATE statement creates space for the following:

• Arrays with the ALLOCATABLE attribute

• Variables with the POINTER attribute

The ALLOCATE statement is defined as follows:

allocate_stmt is ALLOCATE (allocation_list [, STAT = stat_variable])

stat_variable is scalar_int_variable

allocation is allocate_object [(allocate_shape_spec_list)]

allocate_object is variable_name

or structure_component

allocate_shape_spec is [allocate_lower_bound :] allocate_upper_bound

allocate_lower_bound is scalar_int_expr

allocate_upper_bound is scalar_int_expr

The stat_variable, allocate_lower_bound, and allocate_upper_bound must each be
scalar integer expressions.

Each allocate_object must be a pointer or an allocatable array.

An attempt to allocate space for an allocatable array that is currently allocated
results in an error condition.

An allocate_object or a subobject of an allocate_object cannot appear in a bound in
the same allocate statement.

If a STAT= variable appears, it must not be allocated in the same ALLOCATE
statement. A STAT= variable cannot depend on the value, bounds, allocation
status, or association status of any allocate_object or subobject of an allocate_object
allocated in the same statement. It is set to zero if the allocation is successful
and is set to a positive value if there is an error condition; when an error is
detected, subsequent items in the allocation_list are not allocated. If there is no
STAT= variable, the program terminates when an error condition occurs.

You can obtain an online explanation of an error identified by the STAT= return
value. To do this, join the returned value with its group name, shown in the

206 007–3692–004

Using Data [6]

following list, and use the resulting string as an argument to the explain(1)
command. For example:

explain lib-5000
explain 90476

Table 8. Message number identifiers

Message number Group name Source of message

1 through 899 sys Operating system

1000 through 1999 lib Fortran library (UNICOS and UNICOS/mk
systems)

4000 through 4999 lib Fortran library (IRIX systems)

5000 through 5999 lib Flexible File I/O (FFIO) library

90000 through 90500 None Tape system

An argument to an inquiry function in an ALLOCATE statement must not
appear as an allocate object in that statement. For example, the use of the
intrinsic inquiry function SIZE in the following code is not permitted.

REAL, ALLOCATABLE :: A(:), B(:)

ALLOCATE (A(10), B(SIZE(A)))

The number of allocate shape specifications must agree with the rank of the
array.

If the lower bound is omitted, the default is 1. If the upper bound is less than
the lower bound, the extent in that dimension is 0 and the array has zero size.

An allocate object can be of type character and it can have a length of 0, in
which case no memory is allocated.

The values of the bounds expressions at the time an array is allocated
determine the shape of the array. If an entity in a bounds expression is
subsequently redefined, the shape of the allocated array is not changed.

007–3692–004 207

Fortran Language Reference Manual, Volume 1

6.5.1.1 Allocation of Allocatable Arrays

You must declare the rank of an allocatable array, but the bounds, extents,
shape, and size are determined when the array is allocated. After allocation the
array can be defined and redefined. The array then is said to be currently
allocated. It is an error to allocate an allocatable array that is already allocated.
The intrinsic function ALLOCATED(3I) can be used to query the allocation status
of an allocatable array if the allocation status is defined, for example:

REAL, ALLOCATABLE :: X(:, :, :)
. . .

IF (.NOT. ALLOCATED(X)) ALLOCATE (X(-6:2, 10, 3))

X is not available for use in the program until it has been allocated space by an
ALLOCATE statement. X must be declared with a deferred-shape array
specification and the ALLOCATABLE attribute.

6.5.1.2 Allocation of Pointers

When an object with the POINTER attribute is allocated, space is created, and
the pointer is associated with that space, which becomes the pointer target. A
reference to the pointer name can be used to define or access its target. The
target can be an array or a scalar. Additional pointers can become associated
with the same target by pointer assignment (described in Section 7.5.3, page
285). A pointer target can be an array with the ALLOCATABLE attribute if the
array also has the TARGET attribute. Allocation of a pointer creates an object
that implicitly has the TARGET attribute.

It is not an error to allocate a pointer that is currently associated with a target.
In this case, a new pointer target is created and the previous association of the
pointer is lost. If there was no other way to access the previous target, it
becomes inaccessible.

The ASSOCIATED(3I) intrinsic function can be used to query the association
status of a pointer if the association status of the pointer is defined. The
ASSOCIATED(3I) intrinsic function also can be used to inquire whether a
pointer is associated with a target or whether two pointers are associated with
the same target.

Pointers can be used in many ways; an important usage is creating linked lists.
For example:

TYPE NODE

INTEGER :: VALUE

TYPE(NODE), POINTER :: NEXT

208 007–3692–004

Using Data [6]

END TYPE NODE

TYPE(NODE), POINTER :: LIST

. . .

ALLOCATE(LIST)

LIST%VALUE = 17

ALLOCATE(LIST%NEXT)

The first two executable statements create a node pointed to by LIST and put
the value 17 in the VALUE component of the node. The third statement creates
a second node pointed to by the NEXT component of the first node.

6.5.2 NULLIFY Statement

The NULLIFY statement causes a pointer to be disassociated from any target.
Pointers have an initial association status that is undefined. To initialize a
pointer to point to no target, it is necessary to execute a NULLIFY statement for
the pointer.

The NULLIFY statement is defined as follows:

nullify_stmt is NULLIFY (pointer_object_list)

pointer_object is variable_name

or structure_component

Each pointer_object must have the POINTER attribute.

A pointer_object cannot depend on the value, bounds, or association status of
another pointer_object or subobject of another pointer_object in the same NULLIFY
statement.

6.5.3 DEALLOCATE Statement

The DEALLOCATE statement releases the space allocated for an allocatable array
or a pointer target and nullifies the pointer. After an allocatable array or pointer
has been deallocated, it cannot be accessed or defined until it is allocated again
or, in the case of a pointer, assigned to an existing target.

In some cases, the execution of a RETURN statement in a subprogram may cause
the association status of a pointer to become undefined. This can be avoided if

007–3692–004 209

Fortran Language Reference Manual, Volume 1

the pointer is given the SAVE attribute or if it is declared in a subprogram that
remains active. (The main program is always active. Variables declared in
modules accessed by the main program and named common blocks specified in
the main program do not need to be given the SAVE attribute; these entities
have the attribute automatically. If the main program calls subroutine A and
subroutine A calls function B, then the main program, subroutine A, and function
B are active until a return from function B is executed, at which time only the
main program and subroutine A are active. If a recursive subprogram becomes
active, it remains active until the return from its first invocation is executed.)

The DEALLOCATE statement is defined as follows:

deallocate_stmt is DEALLOCATE (allocate_object_list [, STAT = stat_variable])

The stat_variable must be a scalar integer variable.

Each allocate_object must be a pointer or an allocatable array.

An allocate_object must not depend on the value, bounds, allocation status, or
association status of another allocate_object or subobject of another allocate_object
in the same DEALLOCATE statement, nor can it depend on the value of the
stat_variable in the same DEALLOCATE statement.

If there is a STAT= variable and it is a pointer, it must not be deallocated in the
same DEALLOCATE statement, nor can it depend on the value, bounds,
allocation status, or association status of any allocate_object or subobject of an
allocate_object in the same DEALLOCATE statement. The stat_variable is set to zero
if the deallocation is successful and is set to a positive value if there is an error
condition. If STAT=stat_variable is not specified, the program terminates when
an error condition occurs.

You can obtain an online explanation of an error identified by the STAT= return
value. To do this, join the returned value with its group name, shown in the
following list, and use the resulting string as an argument to the explain(1)
command. For example:

explain lib-5000

explain 90476

Table 9. Message number identifiers

210 007–3692–004

Using Data [6]

Message number Group name Source of message

1 through 899 sys Operating system

1000 through 1999 lib Fortran library (UNICOS and UNICOS/mk
systems)

4000 through 4999 lib Fortran library (IRIX systems)

5000 through 5999 lib Flexible File I/O (FFIO) library

90000 through 90500 None Tape system

6.5.3.1 Deallocation of Allocatable Arrays

To be deallocated, an allocatable array must be currently allocated; otherwise,
an error condition will occur. You can use the inquiry intrinsic function
ALLOCATED(3I) to determine if an array is currently allocated.

An allocatable array can have the TARGET attribute. If such an array is
deallocated, the association status of any pointer associated with the array will
become undefined. Such an array must be deallocated by the appearance of its
name in a DEALLOCATE statement. It must not be deallocated by the
appearance of the pointer name in a DEALLOCATE statement.

When a RETURN or END statement is executed in a subprogram, local allocatable
arrays are deallocated unless any of the following conditions exist:

• The array has the SAVE attribute

• The array is specified in a module that is accessed by an active subprogram

• The array is accessed by host association

The following is an example of the allocation and deallocation of an allocatable
array:

REAL, ALLOCATABLE :: X(:, :)

. . .

ALLOCATE (X(10, 2), STAT = IERR)

IF (IERR .GT. 0) CALL HANDLER
X = 0.0

. . .

DEALLOCATE (X)

. . .

007–3692–004 211

Fortran Language Reference Manual, Volume 1

ALLOCATE (X(-10:10, 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
ALLOCATABLE attribute. Space is allocated for it and it is given bounds,
extents, shape, and size and then initialized to have zero values in all elements.
Later X is deallocated, and still later, it is again allocated with different bounds,
extents, shape, and size, but its rank remains as declared.

6.5.3.2 Deallocation of Pointers

Only a pointer with defined association status can be deallocated. Deallocating
a pointer with an undefined association status or a pointer associated with a
target that was not created by allocation causes an error condition in the
DEALLOCATE statement. A pointer associated with an allocatable array must
not be deallocated. (Of course, the array itself can be deallocated.)

It is possible (by pointer assignment) to associate a pointer with a portion of an
object such as an array section, an array element, or a substring. A pointer
associated with only a portion of an object cannot be deallocated. If more than
one pointer is associated with an object, deallocating one of the pointers causes
the association status of the others to become undefined. Such pointers must
not be arguments to the ASSOCIATED(3I) inquiry function.

When a RETURN or END statement is executed in a procedure, the association
status of a pointer declared or accessed in the procedure becomes undefined
unless one of the following conditions is true:

• The pointer has the SAVE attribute

• The pointer is specified in a module that is accessed by an active subprogram

• The pointer is accessed by host association

• The pointer is in blank common

• The pointer is in a named common block that is specified in an active
subprogram or has the SAVE attribute

• The pointer is the return value of a function declared to have the POINTER
attribute

If the association status of a pointer becomes undefined, the pointer can no
longer be referenced, defined, or deallocated. It can be allocated, nullified, or
pointer-assigned to a new target.

The following is an example of the allocation and deallocation of a pointer:

212 007–3692–004

Using Data [6]

REAL, POINTER :: X(:, :)

. . .
ALLOCATE (X (10, 2), STAT = IERR)

IF (IERR .GT. 0) CALL HANDLER

X = 0.0

. . .

DEALLOCATE (X)

. . .
ALLOCATE (X(-10:10, 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
POINTER attribute. Space is allocated for it and it is given bounds, extents,
shape, and size and then initialized to have zero values in all elements. Later X
is deallocated, and still later, it is again allocated with different bounds, extents,
shape, and size. This example is quite similar to the previous example for
allocatable arrays, except that, in the case of pointers, it is not necessary to
deallocate X before allocating it again.

007–3692–004 213

Expressions and Assignments [7]

In Fortran, calculations are specified by writing expressions. Expressions look
much like algebraic formulas in mathematics, particularly when the expressions
involve calculations on numerical values.

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas that involve
nonnumeric quantities rather than numeric ones.

This chapter describes how valid expressions can be formed, how they are
interpreted, and how they are evaluated. One of the major uses of expressions
is in assignment statements where the value of an expression is assigned to a
variable. The assignment statement appears in four forms: intrinsic assignment,
defined assignment, masked array assignment, and pointer assignment. In the
first three forms, a value is computed by performing the computation specified
in an expression and the value is assigned to a variable. In the fourth form, a
pointer, the object on the left side, is made to point to the object or target on the
right side. The four forms of the assignment statement are also described in this
chapter.

Note: The Fortran statement syntax in this manual is defined using the same
terms used in the Fortran standard. In this chapter, however, certain terms
from the standard have been changed to improve clarity.

7.1 Introduction to Expressions

Fortran allows you to define data types, operators for these types, and
operators for intrinsic types. These capabilities are provided within the general
framework for expressions, which consists of three sets of rules:

• The rules for forming a valid expression

• The rules for interpreting the expression (giving it a meaning)

• The rules for evaluating the expression (how the computation may be
carried out)

An expression is formed from operators and operands. There is no change from
FORTRAN 77 in the rules for forming expressions, except that a new class of
operators has been defined. These are user-defined operators, which are either
unary or binary operators. They have the form of a sequence of letters

007–3692–004 215

Fortran Language Reference Manual, Volume 1

surrounded by periods; .INVERSE. and .PLUS. are examples of possible
user-defined operators.

The formal (BNF) rules for forming expressions imply an order for combining
operands with operators. These rules specify that expressions enclosed in
parentheses are combined first and that, for example, the multiply operator * is
combined with its operands before the addition operator + is combined with its
operands. This order for operators in the absence of specific parentheses is
called the operator precedence and is summarized in Section 7.2.5, page 240. New
operators, such as == and >=, have the same precedence and meaning as .EQ.
and .GE., respectively.

The formation rules for expressions imply that the defined unary operators
have highest precedence of all operators, and defined binary operators have the
lowest precedence of all operators. When they appear in a context where two
or more of these operators of the same precedence are adjacent, the operands
are combined with their operators in a left-to-right manner, as is the case for the
familiar + and - operators, or in a right-to-left manner for the exponentiation
operator (**).

Intrinsic operators are generic in the sense that they can operate on operands of
different types. For example, the plus operator + operates on operands of type
integer as well as real and complex. Intrinsic operators can be extended further
by the programmer to operate on operands of types for which there are no
intrinsic operations. Similarly, you can use defined unary and defined binary
operators to operate on operands of types for which there are no previous
definitions. The Fortran Language Reference Manual, Volume 2, describes how any
operator can be made generic by the programmer using a generic specifier on
an interface block.

The rules for interpretation of an expression are provided by the interpretation
of each operator in the expression. When the operator is an intrinsic operator
such as +, *, or .NOT., and the operands are of intrinsic types allowed for the
intrinsic operator, the interpretation is provided by the usual mathematical or
symbolic meaning of the operation. Thus, + with two numeric operands means
that the two operands are added together. For the user-defined operators, the
interpretation is provided by a user-supplied function subprogram with a
designation that this subprogram is to be used to define the operation. Fortran
allows the intrinsic operator symbols to be extended to cases in which the
operands are not of the usual intrinsic types defined by the standard. For
example, the + operator can be defined for operands of type RATIONAL (a
user-defined type) or for operands of type logical with the interpretation
provided by a user-supplied function subprogram. The rules for construction of

216 007–3692–004

Expressions and Assignments [7]

expressions (the syntax rules) are the same for user-defined operators as for
intrinsic operators.

The general rule for evaluation of a Fortran expression states that any method
that is mathematically equivalent to that provided by the construction and
interpretation rules for the expression is permitted, provided the order of
evaluation indicated by explicit parentheses in the expression is followed. Thus,
a compiler has a great deal of freedom to rearrange or optimize the computation,
provided the rearranged expression has the same mathematical meaning.

Arrays and pointers as objects can appear in expressions and assignment
statements. This chapter describes using arrays and pointers in the following
contexts:

• As operands of intrinsic and user-defined operations

• As the variables being assigned in intrinsic assignment statements

• As the variables in pointer assignment statements and masked array
assignment statements

7.1.1 Assignment

The result obtained from the evaluation of an expression can be used in many
ways. For example, it can be printed or passed to a subprogram. In many
cases, however, the value is assigned to a variable and that value can be used
later in the program by referencing the variable.

Execution of the assignment statement causes the expression to be evaluated
(by performing the computation indicated), and then the value of the
expression is assigned to the variable on the left of the equal sign.

The following example shows an assignment statement:

REAL_AGE = REPORTED_AGE + 3.0

REPORTED_AGE + 3.0 is the expression that indicates how to compute a
value, which is assigned to the variable REAL_AGE.

The following example involves subscripts:

A(I+3) = PI + A(I-3)

The value of the subscript expression I-3 is determined and the value of the
I-3 element of A is added to the value of PI to produce a sum. Before the

007–3692–004 217

Fortran Language Reference Manual, Volume 1

result of this expression is assigned, the value of the subscript expression I+3 is
determined and the value of the sum is assigned to the element I+3 of A.

The previous examples are arithmetic. Fortran has expressions of other types,
such as logical, character, and derived type. Values of expressions of these other
types can be assigned to variables of these other types. As with operators, the
programmer can extend the meaning of assignment to types not defined
intrinsically and can redefine assignment for two objects of the same derived
type. Such assignments are called defined assignments. In addition, arrays and
pointers each have special forms of assignment statements called masked array
assignment and pointer assignment, respectively. These two assignment statement
forms are described later in this chapter.

7.1.2 Expressions

An assignment statement is only one of the Fortran statements in which
expressions may occur. Expressions also can appear in subscripts, actual
arguments, IF statements, PRINT statements, WHERE statements, declaration
statements, and many other statements.

An expression represents a computation that results in a value and can be as
simple as a constant or variable. The value of an expression has a type and can
have zero, one, or two type parameter values. If the value is of a derived type,
it has no type parameter. If it is of an intrinsic type, it has a kind type
parameter, and if, in addition, it is of the type character, it has a character length
parameter. In addition, the value is a scalar (including a structure) or an array.

A complex value or a structure value is a scalar, even though it can consist of
more than one value (for example, a complex value consists of two real values).

Arrays and pointers can be used as operands of intrinsic and defined operators.
For intrinsic operators, when an array is an operand, the operation is performed
element-wise on the elements of the array. For intrinsic operators, when a
pointer is an operand, the value of the target pointed to by (associated with) the
pointer is used as the operand. For defined operators, the array or pointer is
used in a manner determined by the procedure defining the operation.

As indicated in the introduction to this chapter, the presentation of expressions
is described in terms of the following three basic sets of rules:

• The rules for forming expressions (syntax)

• The rules for interpreting expressions (semantics)

• The rules for evaluating expressions (optimization)

218 007–3692–004

Expressions and Assignments [7]

The syntax rules indicate which forms of expressions are valid. The semantics
indicate how each expression is to be interpreted. After an expression has been
given an interpretation, a compiler can evaluate another completely different
expression, provided the expression evaluated is mathematically equivalent to
the one written.

To see how this works, consider the expression 2 * A + 2 * B in the
following PRINT statement:

PRINT *, 2 * A + 2 * B

The syntax rules described later in this chapter indicate that the expression is
valid and suggest an order of evaluation. The semantic rules specify the
operations to be performed, which in this case, are the multiplication of the
values of A and B by 2 and the addition of the two results. That is, the semantic
rules indicate that the expression is to be interpreted as if it were the following:

((2 * A) + (2 * B))

After the correct interpretation has been determined, the Fortran rules of
evaluation allow a different expression to be used to evaluate the expression,
provided the different expression is mathematically equivalent to the one
written. For example, a processor can first add A and B and then multiply the
result by 2, because the following expression is mathematically equivalent to
the one written:

2 * (A + B)

Although alternative evaluations are allowed, three properties should be noted:

• Parentheses must not be violated. Consider the following expression:

(2 * A) + (2 * B)

This expression must not be evaluated as follows:

2 * (A + B)

This gives the programmer some control over the method of evaluation.

• Integer division is not mathematically equivalent to real division. The value
of 3/2 is 1 and so cannot be evaluated as 3*0.5, which is 1.5.

• Mathematically equivalent expressions can produce computationally
different results because of the implementation of arithmetic and rounding
on computer systems. For example, the expression X/2.0 could be
evaluated as 0.5*X, even though the results may be slightly different. Also,

007–3692–004 219

Fortran Language Reference Manual, Volume 1

for example, the expression 2 * A + 2 * B could be evaluated as
2*(A+B); when A and B are of type real, the two mathematically equivalent
expressions may yield different values because of different rounding errors
and different arithmetic exceptions in the two expressions.

7.2 Formation of Expressions

An expression is formed from operands, operators, and parentheses. The
simplest form of an expression is a constant or a variable.

Expression Meaning

3.1416 A real constant

.TRUE. A logical constant

X A scalar variable

Y An array variable

Y(K) A variable that is an array element of Y

Y(2:10:2) A variable that is an array subsection of Y

M%N A variable that is a component of a structure M

Y(K)(I:I+3) A variable that is a substring of array element
Y(K)

The values of these simple expressions are the constant value 3.1416, the
constant value .TRUE., the value of the variable X, the value of the array Y, the
value of the array element Y(K), the value of the array subsection Y(2:10:2),
the value of the component N of structure M, and the value of a substring of an
array element Y(K), respectively.

7.2.1 Operands

An operand in an expression can be one of the following items:

• A constant or subobject of a constant

• A variable (for example, a scalar, an array, a substring, or a pointer)

• An array constructor

• A structure constructor

220 007–3692–004

Expressions and Assignments [7]

• A function reference (returning, for example, a scalar, an array, a character
variable, or a pointer)

• Another expression in parentheses

The following examples show operands:

A ! scalar or an array

B(1) ! array element or function
C(3:5) ! array section or a substring

(A + COS(X)) ! expression in parentheses

(/ 1.2, 2.41 /)! array constructor

RATIONAL(1,2) ! structure constructor or function

I_PTR ! pointer to an integer target

7.2.2 Binary and Unary Operations

There are two forms that operations can take in an expression. One is an
operation involving two operands, such as multiplying two numbers together.
The other is an operation on one operand, such as making a number negative.
These forms are called binary and unary operations, respectively.

Table 10 lists the intrinsic operators. You can use function subprograms to
define additional operators. User-defined operators are either binary or unary
operators.

Table 10. Intrinsic operators and the allowed types of their operands

Operator category Intrinsic operator Operand types

Arithmetic **, *, /, +, -, unary +,
unary -

Numeric of any combination of
numeric types and kind type
parameters or Cray pointer. Cray
pointers are only allowed with the +
or - operators.

Character // Character of any length.

Relational .EQ., .NE., ==, /= Both of any numeric type and any
kind type parameter or Cray pointer,
or both of type character with any
character length parameter.

007–3692–004 221

Fortran Language Reference Manual, Volume 1

Operator category Intrinsic operator Operand types

Relational .GT., .GE., .LT., .LE.,
>, >=, <, <=

Both of any numeric type (except
complex) and any kind type
parameter or Cray pointer, or both of
type character with any character
length parameter.

Logical .NOT., .AND., .OR.,
.XOR., .EQV., .NEQV.

Both of type logical with any
combination of kind type parameters.

Bitwise masking (Boolean)
expressions (EXT)

.NOT., .AND., .OR.,

.XOR., .EQV., .NEQV.
Integer, real, typeless, or Cray pointer.

ANSI/ISO: The Fortran standard does not specify the bitwise masking
(Boolean) expressions, nor does it specify the .XOR. operator as a logical
operator.

A binary operator combines two operands, as in the following:

x1 operator x2

Examples:

A + B

2 * C

The examples show an addition between two operands A and B, and a
multiplication of two operands, the constant 2 and the operand C.

A unary operation acts on one operand, as in the following:

operator x1

Examples:

- C

.NOT. L

The first example results in the value minus C. The second example produces a
value that is the logical complement of L; the operator .NOT. is the only
intrinsic operator that is a unary operator and is never a binary operator.

222 007–3692–004

Expressions and Assignments [7]

7.2.3 Intrinsic and Defined Operations

Intrinsic operations are those whose definitions are known to the compiler. They
are built into Fortran and are always available for use in expressions. Table 10,
page 221, lists the operators built into Fortran as specified by the standard.

The relational operator symbols ==, /=, >, >=, <, and <= are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., and .LE., respectively.

The less than or greater than operation is represented by the <> operator and the
.LG. keyword. This operation is suggested by the IEEE standard for
floating-point arithmetic, and the CF90 and MIPSpro 7 Fortran 90 compilers
support this operator. Only values of type real can appear on either side of the
<> or .LG. operators. If the operands are not of the same kind type value, the
compiler converts them to equivalent kind types. This operator’s functionality
differs slightly, depending on your platform, as follows:

• On IRIX, on UNICOS/mk, and on CRAY T90 systems that support IEEE
arithmetic, the <> and .LG. operators perform a less-than-or-greater-than
operation as specified in the IEEE standard for floating-point arithmetic.

• On UNICOS systems, except for CRAY T90 systems that support IEEE
arithmetic, the <> and .LG. operators are evaluated as /= and .NE.
operators. Note that <> and /= are still distinct operators on these platforms
in the sense that different generic overloads may be written for each of
them. As on systems that conform to the IEEE standard for floating-point
arithmetic, if both operands are not of type real and the operator is not
overloaded with a generic overload interface block, an error message is
generated.

ANSI/ISO: The Fortran standard does not specify the <> or .LG. operators.

The CF90 and MIPSpro 7 Fortran 90 compilers allow abbreviations for the
logical and masking operators. The abbreviations .A., .O., .N., and .X. are
synonyms for .AND., .OR., .NOT., and .XOR., respectively. If you define the
abbreviated operator for any type, the abbreviated form of the intrinsic operator
cannot be used in any scope in which the defined operator is accessible.

ANSI/ISO: The Fortran standard does not specify abbreviations for the
logical and masking operators.

In addition to the Fortran operators that are intrinsic (built in), there may be
user-defined operators in expressions.

Defined operations are those that you define in the Fortran program and are
made available to each program unit that uses them. The computation

007–3692–004 223

Fortran Language Reference Manual, Volume 1

performed by a defined operation is described explicitly in a function that must
appear as a subprogram in the Fortran program where it is used. The operator
used in a defined operation is called a defined operator. In this way, you extend
the repertoire of operations so that computations can be expressed in a natural
way using operator notation. Function subprograms that define operators are
explained in detail in the Fortran Language Reference Manual, Volume 2.

A defined operator uses a symbol that is either the symbol for an intrinsic
operator or is a new operator symbol. The synonyms described above for the
relational operators remain synonyms in all contexts, even when there are
defined operators. For example, if the operator < is defined for a new type, say
STRING, the same definition applies to the operator .LT. for the type STRING;
if the operator .LT. is specified as private, the operator < is also private.

A distinction is made between a defined (or new) operator and an extended
intrinsic operator. An extended intrinsic operator is one that uses the same symbol
as an intrinsically defined Fortran operator, like plus + or multiply *. It also
causes the operations to be combined in the same order as is specified for the
intrinsic operator. A defined operator is one where the operator symbol is not the
same as an intrinsic operator but is new, such as the .INVERSE. operator.
Defined operators, however, have a fixed precedence; defined unary operators
have the highest precedence of all operators, and defined binary operators have
the lowest precedence of all operators. The precedences of all operators are
described in more detail in Section 7.2.5, page 240.

A defined elemental operation is a defined operation for which the function is
elemental.

ANSI/ISO: The masking or Boolean operators and their abbreviations, which
are extensions to Fortran, can be redefined as defined operators. If you
redefine a masking operator, your definition overrides the intrinsic masking
operator definition. See Table 10, page 221, for a list of the operators.

7.2.4 Rules for Forming Expressions

Expressions are formed by combining operands. Operands can be constants,
variables (scalars, array elements, arrays, array sections, structures, structure
components, and pointers), array constructors, structure constructors, functions,
and parenthesized expressions with intrinsic and defined operators.

The method used to specify the expression formation rules is a collection of
syntax rules that determine the forms of expressions. The order of evaluation of
the operations in an expression is determined by the usual semantics for the
operations, and the syntax rules are designed to be consistent with these

224 007–3692–004

Expressions and Assignments [7]

semantics. In fact, the order of evaluation defines a precedence order for
operators that is summarized in Table 11.

Table 11. The hierarchy of expressions through forms

Term Definition

expression [expression defined_operator] equivalence_expression

equivalence_expression [equivalence_expression .EQV.] disjunct_expression
equivalence_expression .NEQV. disjunct_expression

Exclusive OR (extension) [disjunct_expression .XOR.] conjunct_expression

disjunct_expression [disjunct_expression .OR.] conjunct_expression

conjunct_expression [conjunct_expression .AND.] not_expression

not_expression [.NOT.] comparison_expression

comparison_expression [concatenation_expression relational_operator] concatenation_expression

concatenation_expression [concatenation_expression //] summation_expression

summation_expression [summation_expression +] multiplication_expression
summation_expression - multiplication_expression
+ multiplication_expression
- multiplication_expression

multiplication_expression [multiplication_expression *] exponentiation_expression
multiplication_expression / exponentiation_expression

exponentiation_expression defined_unary_expression [** exponentiation_expression]

defined_unary_expression [defined_operator] primary

primary constant
constant_subobject
variable
array_constructor
structure_constructor
function_reference
(expression)

The set of syntax rules defines an expression at the highest level in terms of
operators and operands, which are themselves expressions. As a result, the
formal set of rules is recursive. The basic or lowest level of an expression is a

007–3692–004 225

Fortran Language Reference Manual, Volume 1

primary, which, for example, can be a variable, a constant, or a function, or
recursively an expression enclosed in parentheses. The rules for forming
expressions are described from the lowest or most primitive level to the highest
or most complex level; that is, the rules are stated from a primary up to an
expression.

7.2.4.1 Primary

A primary is defined as follows:

primary is constant

or constant_subobject

or variable

or array_constructor

or structure_constructor

or function_reference

or (expr)

constant_subobject is subobject

A variable that is a primary must not be a whole assumed-size array or a
section of an assumed-size array name, unless the last subscript position of the
array is specified with a scalar subscript or a section subscript in which the
upper bound is specified.

The following examples show primaries:

Primary Meaning

3.2 A real constant

ONE A named constant

’ABCS’(I:I) A constant subobject

A A variable (scalar, array, structure, or pointer)

B(:,1:N) An assumed-size array with an upper bound in
the last dimension

C(I) An array element

CH(I:J) A substring

226 007–3692–004

Expressions and Assignments [7]

(/ 1, J, 7 /) An array constructor

RATIONAL(I, J) A structure constructor

FCN(A) A function reference

(A * B) A parenthesized expression

In the previous examples, ONE is a named constant if it has the PARAMETER
attribute or appears in a PARAMETER statement. ’ABCS’(I:I) is a constant
subobject even though I may be a variable because its parent (’ABCS’) is a
constant; the reference ’ABCS’(I:I) is a constant subobject because it cannot
be defined like a variable can be defined. RATIONAL is a derived type and FCN
is a user-defined function.

When an array variable is a primary, the whole array is used, except in a
masked assignment statement. In a masked assignment statement, only that
part of the array specified by the mask is used.

When a pointer is a primary, the target associated with (pointed to by) the
pointer is used, except possibly when the pointer is an actual argument of a
procedure, or is an operand of a defined operation or a defined assignment.
Whether the pointer or the target is used in these exceptional cases is
determined by the procedure invoked by the reference.

Recall that an assumed-size array is a dummy argument whose shape is not
completely specified in the subprogram in that the extent in the last dimension
is determined by its corresponding actual argument. The implementation model
is that the extent in the last dimension is never known to the subprogram but is
specified by the use of a subscript, section subscript, or vector subscript
expression that defines an upper bound in the last dimension. Unless the extent
is specified in this way, such an object must not be used as a primary in an
expression. On the other hand, if a subscript, section subscript with an extent
for the upper bound, or a vector subscript is specified for the last dimension,
the array value has a well-defined shape and hence can be used as a primary in
any expression. For example, if A is declared as REAL A(3,*), array A(:,3)
has a well-defined shape and can be used as a primary in an expression.

Expressions can be used as actual arguments in procedure references (function
references or subroutine calls). Because actual arguments can be expressions
involving operations, actual arguments must not contain assumed-size arrays,
unless their shape is well-defined, as described above. An actual argument,
however, can be just a variable, which then allows the actual argument to be
the name of an assumed-size array. This implies that such actual arguments can
be assumed-size arrays, unless the procedure requires the shape of the
argument to be specified by the actual argument. Most of the intrinsic

007–3692–004 227

Fortran Language Reference Manual, Volume 1

procedures that allow array arguments require the shape to be specified for the
actual array arguments, and therefore assumed-size arrays cannot be used as
actual arguments for most intrinsic functions. The exceptions are all references
to the intrinsic function LBOUND(3I), and certain references to the intrinsic
functions UBOUND(3I) and SIZE(3I).

7.2.4.2 Defined Unary Expression

Defined unary expressions have the highest operator precedence. A defined
unary expression is a defined operator followed by a primary. These are defined
as follows:

defined_unary_expr is [defined_operator] primary

defined_operator is . letter [letter]

A defined operator must not contain more than 31 letters.

A defined operator must not be the same as any intrinsic operator (.NOT.,
.AND., .OR., .EQV., .NEQV., .EQ., .NE., .GT., .GE., .LT., .LE., or .LG.)
or any logical literal constant (.FALSE. or .TRUE.).

ANSI/ISO: The Fortran standard does not describe the .LG. operator.

A defined operator can be the same as one of the masking or Boolean operators
supported by the CF90 and MIPSpro 7 Fortran 90 compilers as extensions to the
Fortran standard. The corresponding CF90 and MIPSpro 7 Fortran 90 operator
loses its intrinsic properties. Note that the abbreviations .T., .F., .A., .O.,
.N., and .X. are synonyms for .TRUE., .FALSE., .AND., .OR., .NOT., and
.XOR., respectively. If you define the abbreviated operator for any type, the
abbreviated form of the intrinsic operator also cannot be used in any scope in
which the defined operator is accessible, and the redefined abbreviated logical
constants can no longer be used as logical constants.

The following examples show defined unary expressions:

Expression Meaning

.INVERSE. B A defined unary expression (where .INVERSE. is
a defined operator)

228 007–3692–004

Expressions and Assignments [7]

A A primary is also a defined unary expression

7.2.4.3 Exponentiation Expression

An exponentiation expression is an expression in which the operator is the
exponentiation operator **. This is defined as follows:

exponentiation_expr is defined_unary_expr [** exponentiation_expr]

Note that the definition is right recursive (that is, the defined term appears to
the right of the operator **) which indicates that the precedence of the **
operator in contexts of equal precedence is right-to-left. Thus, the interpretation
of the expression A ** B ** C is A ** (B ** C).

The following examples show exponentiation expressions:

Expression Meaning

A ** B An exponentiation expression

A ** B ** C An exponentiation expression with right-to-left
precedence

.INVERSE. B A defined unary expression is also an
exponentiation expression

A A primary is also an exponentiation expression

7.2.4.4 Multiplication Expression

A multiplication expression is an expression in which the operator is either * or
/. It is defined as follows:

multiplication_expr is [multiplication_expr *] exponentiation_expr

or [multiplication_expr /] exponentiation_expr

Note that the definition is left recursive (that is, the defined term appears to the
left of the operator * or /) which indicates that the precedence of the * and /
operators in contexts of equal precedence is left-to-right. Thus, the
interpretation of the expression A * B * C is (A * B) * C, or A / B * C is

007–3692–004 229

Fortran Language Reference Manual, Volume 1

(A / B) * C. This left-to-right precedence rule applies to the remaining
binary operators except the relational operators.

The following examples show multiplication expressions:

Expression Meaning

A * B A multiplication expression

A * B * C A multiplication expression with left-to-right
precedence

A / B A multiplication expression

A / B / C A multiplication expression with left-to-right
precedence

A ** B An exponentiation expression is also a
multiplication expression

.INVERSE. B A defined unary expression is also a
multiplication expression

A A primary is also a multiplication expression

7.2.4.5 Summation Expression

A summation expression is an expression in which the operator is either + or -. It
is defined as follows:

summation_expr is [[summation_expr] +] multiplication_expr

or [[summation_expr] -] multiplication_expr

The following examples show summation expressions:

Expression Meaning

A + B A summation expression

A + B - C A summation expression with left-to-right
precedence

- A - B - C A summation expression with left-to-right
precedence

+ A A summation expression using unary +

230 007–3692–004

Expressions and Assignments [7]

- A A summation expression using unary -

A * B A multiplication expression is also a summation
expression

A ** B An exponentiation expression is also a
summation expression

.INVERSE. B A defined unary expression is also a summation
expression

A A primary is also a summation expression

7.2.4.6 Concatenation Expression

A concatenation expression is an expression in which the operator is //. It is
defined as follows:

concatenation_expr is [concatenation_expr //] summation_expr

The following examples show concatenation expressions:

Expression Meaning

A // B A concatenation expression

A // B // C A concatenation expression with left-to-right
precedence

A - B A summation expression is also a concatenation
expression

- A A summation expression is also a concatenation
expression

A * B A multiplication expression is also a
concatenation expression

A ** B An exponentiation expression is also a
concatenation expression

.INVERSE. B A defined unary expression is also a
concatenation expression

007–3692–004 231

Fortran Language Reference Manual, Volume 1

A A primary is also a concatenation expression

7.2.4.7 Comparison Expression

A comparison expression is an expression in which the operator is a relational
operator. It is defined as follows:

comparison_expr is [concatenation_expr rel_op] concatenation_expr

rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

The operators ==, /=, <, <=, >, >=, and <> are synonyms in all contexts for the
operators .EQ., .NE., .LT., .LE., .GT., .GE., and .LG., respectively.

ANSI/ISO: The Fortran standard does not describe the .LG. or <> operators.

Note that the definition of a comparison expression is not recursive, and
therefore comparison expressions cannot contain relational operators in contexts
of equal precedence.

The following examples show comparison expressions:

232 007–3692–004

Expressions and Assignments [7]

Expression Meaning

A .EQ. B A comparison expression

A < B A comparison expression

A // B A concatenation expression is also a comparison
expression

A - B A summation expression is also a comparison
expression

- A A summation expression is also a comparison
expression

A * B A multiplication expression is also a comparison
expression

A ** B An exponentiation expression is also a
comparison expression

.INVERSE. B A defined unary expression is also a comparison
expression

A A primary is also a comparison expression

7.2.4.8 Not Expression

A not expression is an expression in which the operator is .NOT.. It is defined as
follows:

not_expr is [.NOT.] comparison_expr

Note that the definition of a not expression is not recursive, and therefore not
expressions cannot contain adjacent .NOT. operators.

The following examples show not expressions:

Expression Meaning

.NOT. A A not expression

A .EQ. B A comparison expression is also a not expression

A // B A concatenation expression is also a not
expression

007–3692–004 233

Fortran Language Reference Manual, Volume 1

A - B A summation expression is also a not expression

- A A summation expression is also a not expression

A * B A multiplication expression is also a not
expression

A ** B An exponentiation expression is also a not
expression

.INVERSE. B A defined unary expression is also a not
expression

A A primary is also a not expression

7.2.4.9 Conjunct Expression

A conjunct expression is an expression in which the operator is .AND.. It is
defined as follows:

conjunct_expr is [conjunct_expr .AND.] not_expr

Note that the definition of a conjunct expression is left recursive, and therefore
the precedence of the .AND. operator in contexts of equal precedence is
left-to-right. Thus, the interpretation of the expression A .AND. B .AND. C is
(A .AND. B) .AND. C.

The following examples show conjunct expressions:

Expression Meaning

A .AND. B A conjunct expression

A .AND. B .AND. C A conjunct expression with left-to-right
precedence

.NOT. A A not expression is also a conjunct expression

A .EQ. B A comparison expression is also a conjunct
expression

A // B A concatenation expression is also a conjunct
expression

A - B A summation expression is also a conjunct
expression

234 007–3692–004

Expressions and Assignments [7]

- A A summation expression is also a conjunct
expression

A * B A multiplication expression is also a conjunct
expression

A ** B An exponentiation expression is also a conjunct
expression

.INVERSE. B A defined unary expression is also a conjunct
expression

A A primary is also a conjunct expression

7.2.4.10 Inclusive Disjunct Expression

An inclusive disjunct expression is an expression in which the operator is .OR.. It
is defined as follows:

inclusive_disjunct_expr is [inclusive_disjunct_expr .OR.] conjunct_expr

Note that the definition of an inclusive disjunct expression is left recursive, and
therefore the precedence of the .OR. operator in contexts of equal precedence is
left-to-right. Thus, the interpretation of the expression A. OR. B .OR. C is
(A .OR. B) .OR. C.

The following examples show inclusive disjunct expressions:

Expression Meaning

A .OR. B An inclusive disjunct expression

A .OR. B .OR. C An inclusive disjunct expression with left-to-right
precedence

A .AND. B A conjunct expression is also an inclusive disjunct
expression

.NOT. A A not expression is also an inclusive disjunct
expression

A .EQ. B A comparison expression is also an inclusive
disjunct expression

A // B A concatenation expression is also an inclusive
disjunct expression

007–3692–004 235

Fortran Language Reference Manual, Volume 1

A - B A summation expression is also an inclusive
disjunct expression

- A A summation expression is also an inclusive
disjunct expression

A * B A multiplication expression is also an inclusive
disjunct expression

A ** B An exponentiation expression is also an inclusive
disjunct expression

.INVERSE. B A defined unary expression is also an inclusive
disjunct expression

A A primary is also an inclusive disjunct expression

7.2.4.11 Equivalence Expressions and Exclusive Disjunct Expressions

An equivalence expression is an expression in which the operator is either .EQV.
or .NEQV.. It is defined as follows:

equivalence_expr is [equivalence_expr .EQV.] inclusive_disjunct_expr

or [equivalence_expr .NEQV.] inclusive_disjunct_expr

An exclusive disjunct expression is an expression in which the operator is .XOR..
It is defined as follows:

EXT exclusive_disjunct_expr is [exclusive_disjunct_expr .XOR.] inclusive_disjunct_expr

ANSI/ISO: The Fortran standard does not specify the .XOR. operator.

Note the following:

• In the following discussion, equivalence expression means either equivalence
expression or exclusive disjunct expression.

• The definition of an equivalence expression is left recursive, and therefore
the precedence of the .EQV. or .NEQV. operators in contexts of equal
precedence is left-to-right. Thus, the interpretation of the expression A
.EQV. B .NEQV. C is (A .EQV. B) .NEQV. C.

236 007–3692–004

Expressions and Assignments [7]

The following examples show equivalence expressions:

Expression Meaning

A .EQV. B An equivalence expression

A .XOR. B An equivalence exclusive disjunct expression

A .NEQV. B .XOR. C An equivalence expression with left-to-right
precedence

A .OR. B An inclusive disjunct expression is also an
equivalence expression

A .AND. B A conjunct expression is also an equivalence
expression

.NOT. A A not expression is also an equivalence expression

A .EQ. B A comparison expression is also an equivalence
expression

A // B A concatenation expression is also an equivalence
expression

A - B A summation expression is also an equivalence
expression

- A A summation expression is also an equivalence
expression

A * B A multiplication expression is also an equivalence
expression

A ** B An exponentiation expression is also an
equivalence expression

.INVERSE. B A defined unary expression is also an equivalence
expression

A A primary is also an equivalence expression

7.2.4.12 Expression

The most general form of an expression is defined as follows:

007–3692–004 237

Fortran Language Reference Manual, Volume 1

expr is [expr defined_binary_op] equivalence_expr

defined_binary_op is .letter [letter]

Note that the definition of an expression is left recursive, and therefore the
precedence of the binary defined operator in contexts of equal precedence is
left-to-right. The interpretation of the expression A .PLUS. B .MINUS. C is
thus (A .PLUS. B) .MINUS. C (where .MINUS. is a defined operator).

The following examples show expressions:

Expression Meaning

A .PLUS. B An expression (where .PLUS. is a defined
operator)

A .CROSS. B
.CROSS. C

An expression with left-to-right precedence
(where .CROSS. is a defined operator)

A .EQV. B An equivalence expression is also an expression

A .OR. B An inclusive disjunct expression is also an
expression

A .AND. B A conjunct expression is also an expression

.NOT. A A not expression is also an expression

A .EQ. B A comparison expression is also an expression

A // B A concatenation expression is also an expression

A - B A summation expression is also an expression

- A A summation expression is also an expression

A * B A multiplication expression is also an expression

A ** B An exponentiation expression is also an
expression

.INVERSE. B A defined unary expression is also an expression

A A primary is also an expression

7.2.4.13 Summary of the Forms and Hierarchy for Expressions

The previous sections have described in detail the sorts of expressions that can
be formed. These expressions form a hierarchy that can best be illustrated by a
figure. Figure 14, page 239, describes the hierarchy by placing the simplest form
of an expression, a variable, at the center of a set of nested rectangles. The more

238 007–3692–004

Expressions and Assignments [7]

general forms of an expression are the enclosing rectangles, from a primary to
an exponentiation expression, to a summation expression, and finally to a
general expression using a defined binary operator .CROSS.. Figure 14
demonstrates that an expression is all of these special case forms, including the
simplest form, a primary.

A.CROSS.B

A.EQV.B

A.OR.B

A.AND.B

.NOT.A

A.EQ.B

A / / B

-A

A*B

A**B

.INVERSE.A

A

(general) expression

equivalence expression

disjunct expression

conjunct expression

not expression

comparison expression

concatenation expression

summation expression

multiplication expression

exponentiation expression

defined unary expression

primary

a10639

Figure 14. The hierarchy of expressions by examples

Table 11, page 225, illustrates the relationship between the different sorts of
expressions by summarizing the definitional forms in one table. The simplest
form of an expression is at the bottom and is the primary, as in Figure 14. The

007–3692–004 239

Fortran Language Reference Manual, Volume 1

next, more general, form is second from the bottom and is the defined unary
expression; it uses the primary in its definition. At the top of the table is the
most general form of an expression.

7.2.5 Precedence of Operators

Table 12 summarizes the relative precedence of operators, including the
precedence when operators of equal precedence are adjacent. An entry of N/A
in the rightmost column indicates that the operator cannot appear in such
contexts. The leftmost column classifies the operators as defined, numeric,
character, relational, and logical operators. Note that these operators are not
intrinsic operators unless the types of the operands are those specified in Table
13, page 242.

Table 12. Categories of operations and relative precedences

Category of
operator Operator Precedence

In context of equal
precedence

Defined Unary defined-operator Highest N/A

Numeric ** . Right-to-left

Numeric * or / . Left-to-right

Numeric Unary + or - . N/A

Numeric Binary + or - . Left-to-right

Character // . Left-to-right

Relational .EQ., .NE., .LT., .LE., .GT., .GE.,
.LG., ==, /=, <, <=, >, >=, <>

. N/A

Logical or
Boolean

.NOT. . N/A

Logical or
Boolean

.AND. . Left-to-right

Logical or
Boolean

.OR. . Left-to-right

Logical .EQV. or .NEQV. . Left-to-right

240 007–3692–004

Expressions and Assignments [7]

Category of
operator Operator Precedence

In context of equal
precedence

Logical or
Boolean

.XOR. . Left-to-right

Defined Binary defined-operator Lowest Left-to-right

For example, consider the following expression:

A .AND. B .AND. C .OR. D

Table 11, page 225, indicates that the .AND. operator is of higher precedence
than the .OR. operator, and the .AND. operators are combined left-to-right
when in contexts of equal precedence; thus, A and B are combined by the
.AND. operator, the result A .AND. B is combined with C using the .AND.
operator, and that result is combined with D using the .OR. operator. Thus,
this expression is interpreted the same way as the following fully parenthesized
expression:

(((A .AND. B) .AND. C) .OR. D)

Notice that the defined operators have fixed precedences; defined unary
operators have the highest precedence of all operators and are all of equal
precedence; defined binary operators have the lowest precedence, are all of
equal precedence, and are combined left-to-right when in contexts of equal
precedence. Both kinds of defined operators may have multiple definitions in
the program unit and therefore may be generic just as intrinsic operators and
intrinsic procedures are generic.

As a consequence of the expression formation rules, unary operators cannot
appear in a context of equal precedence; the precedence must be specified by
parentheses. There is thus no left-to-right or right-to-left rule for any unary
operators. Similarly, the relational operators cannot appear in a context of equal
precedence; consequently, there is no left-to-right or right-to-left rule for the
relational operators. Use of some of the operators as Boolean or masking
operators is an extension to the Fortran standard that is supported by the CF90
and MIPSpro 7 Fortran 90 compilers.

ANSI/ISO: The Fortran standard does not specify the use of operators as
Boolean or masking operators.

007–3692–004 241

Fortran Language Reference Manual, Volume 1

7.2.6 Intrinsic Operations

Intrinsic operations are those known to the processor. For an operation to be
intrinsic, an intrinsic operator symbol must be used, and the operands must be
of the intrinsic types specified in Table 13, page 242.

Note: In the following table, the symbols I, R, Z, C, L, B, and P stand for the
types integer, real, complex, character, logical, Boolean, and Cray pointer,
respectively. Where more than one type for x2 is given, the type of the result
of the operation is given in the same relative position in the next column.
Boolean and Cray pointer types are CF90 and MIPSpro 7 Fortran 90
extensions.

Table 13. Operand types and results for intrinsic operations

Intrinsic operator Type of x1 Type of x2 Type of result

Unary +, - I, R, Z, B, P I, R, Z, I, P

Binary +, -, *, /, ** I I, R, Z, B, P I, R, Z, I, P

R I, R, Z, B R, R, Z, R

Z I, R, Z Z, Z, Z

B I, R, B, P I, R, B, P

P I, B, P P, P, P

(For Cray pointer,
only + and - are
allowed.)

// C C C

.EQ., ==, .NE., /= I I, R, Z, B, P L, L, L, L, L

R I, R, Z, B, P L, L, L, L, L

Z I, R, Z, B, P L, L, L, L, L

B I, R, Z, B, P L, L, L, L, L

P I, R, Z, B, P L, L, L, L, L

C C L

.GT., >, .GE., >=, .LT., <, .LE., <= I I, R, B, P L, L, L, L

R I, R, B L, L, L

242 007–3692–004

Expressions and Assignments [7]

Intrinsic operator Type of x1 Type of x2 Type of result

C C L

P I, P L, L

.LG., <> R R L

.NOT. L L

I, R, B B

.AND., .OR., .EQV., .NEQV., .XOR. L L L

I, R, B I, R, B B

ANSI/ISO: The Fortran standard does not specify the use of type Boolean or
the use of type Boolean in masking expressions, nor does it describe the
.LG. and <> operators.

The intrinsic operations are either binary or unary. The binary operations use
the binary intrinsic operator symbols +, -, *, /, **, //, .EQ., .NE., .LT.,
.GT., .LE., .GE., and .LG.(and their synonyms ==, /=, <>, <, >=, and <>),
.AND., .OR., .XOR., .EQV., and .NEQV.. The unary operations use the unary
intrinsic operator symbols +, -, and .NOT..

Note that the intrinsic operators .AND., .OR., .NOT., and .XOR. can be
abbreviated as .A., .O., .N., or .X.. If a user-defined operator with the same
name as the abbreviated name is accessible in a scope, the abbreviated forms of
these operators may not be used as synonyms for .AND., .OR., .NOT., or
.XOR..

The intrinsic operations are divided into five classes with different rules and
restrictions for the types of the operands. The five classes are numeric intrinsic,
character intrinsic, logical intrinsic, relational intrinsic operations, and bitwise
masking expressions.

The numeric intrinsic operations use the intrinsic operators +, -, *, /, and **.
The operands can be of any numeric type and with any kind type parameters.
The result of the operation is of a type specified by Table 13, page 242, and has
type parameters as specified in Section 7.2.8.2, page 248.

For example, the following expressions, in which I, R, D, and Z are declared to
be of types integer, real, double-precision real, and complex, have the types and
type parameters of the variables R, I, D, and Z, respectively:

I + R

I * I

007–3692–004 243

Fortran Language Reference Manual, Volume 1

I - D

I / Z

There is only one character intrinsic operation; it uses the intrinsic operator //.
The result of a character intrinsic operation is type character.

The logical intrinsic operations use the intrinsic operators .AND., .OR., .NOT.,
.EQV., and .NEQV., respectively. The result of a logical intrinsic operation is
type logical and has type parameters as specified in Section 7.2.8.2, page 248.

The relational intrinsic operations use the intrinsic operators .EQ., .NE., .GT.,
.GE., .LT., .LE., or .LG. or their symbolic synonyms. A relational intrinsic
operation is a numeric relational intrinsic operation if its operands are of type
integer, real, or complex. A relational intrinsic operation is a character relational
intrinsic operation if its operands are of type character. The result of either kind
of relational operation is type logical and has type parameters as specified in
Section 7.2.8.2, page 248.

ANSI/ISO: The Fortran standard does not describe the .LG. operator.

The operators .NOT., .AND., .OR., .EQV., and .XOR. can also be used in the
CF90 and MIPSpro 7 Fortran 90 compilers’ bitwise masking expressions; these
are extensions to the Fortran standard. On UNICOS and UNICOS/mk systems,
the result is Boolean (typeless) and has no kind type parameters. On IRIX
systems, the result is type integer.

7.2.7 Defined Operations

A defined operation is any nonintrinsic operation that is interpreted and
evaluated by a function subprogram specified by an interface block with a
generic specifier of the following form:

OPERATOR (defined_operator)

A defined elemental operation is a defined operation for which the function is
elemental.

A defined operation uses either a defined operator or an intrinsic operator
symbol, and it is either unary or binary. Its forms are as follows:

244 007–3692–004

Expressions and Assignments [7]

intrinsic_unary_op x2

defined_operator x2

x1 intrinsic_binary_op x2

x1 defined_operator x2

The terms intrinsic_unary_op and intrinsic_binary_op include all intrinsically
defined operators; these terms are not specifically defined in any syntax rules.

x1 and x2 are operands. When an intrinsic operator symbol is used, the type of
x2 (for a unary operator) and types of x1 and x2 (for a binary operator) must not
be the same as the types of the operands specified in Table 13, page 242, for the
particular intrinsic operator symbol. Thus, you cannot redefine intrinsic
operations on intrinsic types.

When a defined operation uses an intrinsic operator symbol, the generic
properties of that operator are extended to the new types specified by the
interface block. When a defined operation uses a defined operator, the defined
operation is called an extension operation, and the operator is called an extension
operator. An extension operator can have generic properties by specifying more
than one function subprogram in an interface block with a generic specifier of
the form OPERATOR (defined_operator).

7.2.8 Data Type, Type Parameters, and Shape of an Expression

The data type, type parameters, and shape of a complete expression are
determined by the data type, type parameters, and shape of each constant,
variable, constructor, and function reference appearing in the expression. The
determination is inside-out in the sense that the properties are determined first
for the primaries. These properties are then determined repeatedly for the
operations in precedence order, resulting eventually in the properties for the
expression.

For example, consider the expression A + B * C, where A, B, and C are of
numeric type. First, the data types, type parameter values, and shapes of the
three variables A, B, and C are determined. Because * has a higher precedence
than +, the operation B * C is performed first. The type, type parameters, and
shape of the expression B * C are determined next, and then these properties
for the entire expression are determined from those of A and B * C.

007–3692–004 245

Fortran Language Reference Manual, Volume 1

A defined elemental operation is a defined operation for which the function is
elemental.

7.2.8.1 Data Type and Type Parameters of a Primary

The type, type parameters, and shape of a primary that is a nonpointer variable
or constant are straightforward because these properties are determined by
specification statements for the variable or named constant, or by the form of
the constant. For example, if A is a variable, its declaration in a specification
statement such as the following determines it as an explicit-shaped array of
type real with a default kind parameter:

REAL A(10, 10)

For a constant such as the following, the form of the constant indicates that it is
a scalar constant of type complex and of default kind:

(1.3, 2.9)

For a pointer variable, the type, type parameters, and rank are determined by
the declaration of the pointer variable. However, if the pointer is of deferred
shape, the shape (in particular, the extents in each dimension) is determined by
the target of the pointer. Consider the following declarations and assume that
pointer A is associated with the target B:

REAL, POINTER :: A(:, :)
REAL, TARGET :: B(10, 20)

The shape of A is (10, 20).

The type and type parameters of an array constructor are determined by the
contents of the constructor. Unless the element is of type Boolean (typeless), its
type and type parameters are those of any element of the constructor because
they must all be of the same type and type parameters. If the element is of type
Boolean, the type and kind type of the array constructor are the same as the
default integer type. Therefore, the type and type parameters of the following
array constructor are integer and kind value 1:

(/ 1_1, 123_1, -10_1 /)

Its shape is always of rank one and of size equal to the number of elements.

The type of a structure constructor is the derived type used as the name of the
constructor. A structure has no type parameters. So, the type of the following
structure constructor is the derived type PERSON:

246 007–3692–004

Expressions and Assignments [7]

PERSON(56, ’Father’)

(See Section 4.6, page 112, for the type definition PERSON.)

A structure constructor is always a scalar.

The type, type parameters, and shape of a function are determined by one of
the following:

• An implicit type declaration for the function within the program unit
referencing the function

• An explicit type declaration for the function within the program unit
referencing the function (just like a variable)

• An explicit interface to the function. (When the interface is not explicit, the
function is either an external function or a statement function.)

If the interface is explicit, the type, type parameter, and shape are determined
by one of the following:

• The type and other specification statements for the function in an interface
block within the program unit referencing the function

• The type and other specification statements for the internal or module
procedure specifying the function

• The description of the particular intrinsic function being referenced

Note, however, that because intrinsic functions and functions with interface
blocks can be generic, these properties are determined by the type, type
parameters, and shapes of the actual arguments of the particular function
reference.

For example, consider the following statements as part of the program unit
specifying an internal function FCN:

REAL FUNCTION FCN(X)

DIMENSION FCN(10, 15)

A reference to FCN(3.3) is of type default real with shape (10,15). As a
second example, consider the following:

REAL(SINGLE) X(10, 10, 10)

. . .

. . . SIN(X) . . .

007–3692–004 247

Fortran Language Reference Manual, Volume 1

The interface to SIN(3I) is specified by the definition of the sine intrinsic
function. In this case, the function reference SIN(X) is of type real with kind
parameter value SINGLE and of shape (10,10,10).

The interface is implicit if the function is external (and no interface block is
provided) or is a statement function. In these cases, the shape is always that of
a scalar, and the type and type parameters are determined by the implicit type
declaration rules in effect, or by an explicit type declaration for the function
name. In the following example, FCN(X) is a scalar of type integer with kind
type parameter value SHORT:

IMPLICIT INTEGER(SHORT) (A-F)

. . .

. . . FCN(X) . . .

The one case for variables and functions that is not straightforward is the
determination of the shape of a variable when it is of deferred shape or of
assumed shape. For a deferred-shape array, the rank is known from the
declaration but the size of each dimension is determined as the result of
executing an ALLOCATE statement or a pointer assignment statement. For an
assumed-shape array, the rank is also known from the declaration but the size
is determined by information passed into the subprogram. In the case of
pointers, the shape of the object is that of the target associated with (pointed to
by) the pointer. The shape of deferred-shape and assumed-shape arrays thus
cannot be determined in general until execution time.

7.2.8.2 Type and Type Parameters of the Result of an Operation

The type of the result of an intrinsic operation is determined by the type of the
operands and the intrinsic operation and is specified by Table 13, page 242.

For nonnumeric operations, the type parameters of the result of an operation
are determined as follows:

• For the relational intrinsic operations, the kind type parameter is that for the
default logical type.

• For logical intrinsic operations, the result kind type parameter depends on
that of the operands. If the operands have the same kind type parameter
(that is the same value for KIND=value), the kind type parameter is that of
the operands. If logical operands have different kind type parameter values,
the value of the result is that of the greater kind type parameter value.

• For the character intrinsic operation (//), the operands must have the same
kind type parameter, so the result has that kind type parameter.

248 007–3692–004

Expressions and Assignments [7]

• The character length parameter value for the result is the sum of the
character length parameters of the operands.

For numeric intrinsic operations, the kind type parameter value of the result is
determined as follows:

• For unary operations, the kind type parameter value of the result is that of
the operand.

• Floating-point operands are those of type real or type complex. If an
operation includes a floating-point operand and an integer, the result type
and kind type parameter value is determined as follows:

– The result type is that of the floating-point operand.

– The result kind type parameter value is the same as the kind type
parameter value of the floating-point operand.

See Table 13, page 242, for more information.

• If an operation includes operands of type complex and type real, the result
type and kind type parameter value is determined as follows:

– The result type is type complex.

– The result kind type parameter value is that of the greater value. That is,
the kind type parameter value of each operand is examined, and
whichever kind type parameter value is greater is assigned to the result.

See Table 13, page 242, for more information.

• For binary operations, if the operands are of the same type and kind type
parameters, the kind type parameter value of the result is the kind type
parameter of the operands.

• For binary operations, if the operands are both of type integer but with
different kind type parameters, the kind type parameter value of the result
is the kind type parameter of the operand with the larger decimal exponent
range. If the decimal exponent ranges of the two kinds are the same, the
kind type parameter value of the result is the same as each operand.

• For binary operations, if the operands are both of type real or complex but
with different kind type parameters, the kind type parameter of the result is
the kind type parameter of the operand with the larger decimal precision. If
the decimal precisions are the same, the kind type parameter value is that of
the operands.

007–3692–004 249

Fortran Language Reference Manual, Volume 1

For numeric intrinsic operations, an easy way to remember the result type and
type parameter rules is to consider that the numeric types (integer, real,
complex, and CF90 and MIPSpro 7 Fortran 90 Boolean) are ordered by the
increasing generality of numbers. Integers are contained in the set of real
numbers and real numbers are contained in the set of complex numbers. Within
the integer type, the kinds are ordered by increasing decimal exponent ranges.
Within the real and complex types, the kinds for each type are ordered by
increasing decimal precision.

Using this model, the result type of a numeric intrinsic operation is the same
type as the operand of the greater generality. For the result type parameter, the
rule is complicated: if one or both of the operands is of type real or complex,
the type parameter is that of the set of numbers of the more general type
described above and with a precision as large as the precision of the operands;
if both are of type integer, the result type parameter is of a set of numbers that
has a range as large as the range of the operands.

I4

integer
exp=9
kind=4
32-bit

I8

integer
exp=18
kind=8
64-bit

R8

real
prec=13
kind=8
64-bit

R16

real
prec=27
kind=16
128-bit

C8

complex
prec=13
kind=8
128-bit

C16

complex
prec=27
kind=16
256-bit

a10640

Figure 15. Example ordering of numeric types on UNICOS systems

To illustrate this ordering, consider Figure 15, page 250, which shows ordering
on UNICOS systems. For integers, KIND=4 is 32-bit format and KIND=8 is a
64-bit format, with decimal exponent ranges 9 and 18. For the two kinds of
reals, KIND=8 is a 64-bit format and KIND=16 is a 128-bit format, with decimal
precisions 13 and 27. For the two kinds of complex, KIND=8 is a 128-bit format
and KIND=16 is a 256-bit format, with decimal precisions 13 and 27. Let
variables of the 6 numeric types be I4, I8, R8, R16, C8, and C16, where the
letter designates the type and the digits designate the kind type parameter.
Using this ordering, Table 14 shows the type and type parameters of some
simple expressions.

250 007–3692–004

Expressions and Assignments [7]

Table 14. Type and type parameters of some simple expressions

Expressions Type and type parameters are the same as the variable

I4 + R8 R8

I8 * C16 C16

C8 / C16 C16

I4 - I8 I8

I4 ** C8 C8

R16 + C8 C16

C8 ** I4 C8

I8 - R8 R8

The type and type parameter values of a defined operation are determined by
the interface block for the referenced operation and are the type and type
parameters of the name of the function specified by the interface block. Note
that the operator can be generic and therefore the type and type parameters can
be determined by the operands. For example, consider the following interface:

INTERFACE OPERATOR (.PLUS.)

TYPE(SET) FCN_SET_PLUS(X, Y)
USE DEFINITIONS

TYPE (SET) X, Y

INTENT(IN) X, Y

END FUNCTION FCN_SET_PLUS

TYPE(RATIONAL) FCN_RAT_PLUS(X, Y)

USE DEFINITIONS

TYPE(RATIONAL) X, Y

INTENT(IN) X, Y

END FUNCTION FCN_RAT_PLUS

END INTERFACE

The operation A .PLUS. B, where A and B are of type RATIONAL, is an
expression of type RATIONAL with no type parameters. The operation C
.PLUS. D, where C and D are of type SET is an expression of type SET with no
type parameters.

007–3692–004 251

Fortran Language Reference Manual, Volume 1

7.2.8.3 Shape of an Expression

The shape of an expression is determined by the shape of each operand in the
expression in the same recursive manner as for the type and type parameters
for an expression. That is, the shape of an expression is the shape of the result
of the last operation determined by the interpretation of the expression.

However, the shape rules are simplified considerably by the requirement that
the operands of binary intrinsic operations must be in shape conformance; two
operands are in shape conformance if both are arrays of the same shape, or one or
both operands are scalars. The operands of a defined operation have no such
requirement but must match the shape of the corresponding dummy arguments
of the defining function.

For primaries that are constants, variables, constructors, or functions, the shape
is that of the constant, variable, constructor, or function name. Recall that
structure constructors are always scalar, and array constructors are always
rank-one arrays of size equal to the number of elements in the constructor. For
unary intrinsic operations, the shape of the result is that of the operand. For
binary intrinsic operations, the shape is that of the array operand if there is one
and is scalar otherwise. For defined operations, the shape is that of the function
name specifying the operation.

For example, consider the intrinsic operation A + B where A and B are of type
default integer and default real respectively; assume A is a scalar and B is an
array of shape (3, 5). Then, the result is of type default real with shape (3,
5).

7.2.8.4 The Extents of an Expression

For most contexts, the lower and upper bounds of an array expression are not
needed; only the sizes of each dimension are needed to satisfy array
conformance requirements for expressions. The bounds of an array expression
when it is the ARRAY argument (first positional argument) of the LBOUND(3I)
and UBOUND(3I) intrinsic functions are needed, however.

The functions LBOUND(3I) and UBOUND(3I) have two keyword arguments ARRAY
and DIM. ARRAY is an array expression and DIM, which is optional, is an
integer. If the DIM argument is present, LBOUND(3I) and UBOUND(3I) return the
lower and upper bounds, respectively, of the dimension specified by the DIM
argument. If DIM is absent, they return a rank-one array of the lower and upper
bounds, respectively, of all dimensions of the ARRAY argument. As described
below, these functions distinguish the special cases when the array argument is
a name or structure component with no section subscript list from the general

252 007–3692–004

Expressions and Assignments [7]

case when the array argument is a more general expression. Note that if A is a
structure with an array component B, A%B is treated as if it were an array name
and not an expression.

When the ARRAY argument is an array expression that is not a name or a
structure component, the function LBOUND(3I) returns 1 if the DIM argument is
specified and returns a rank-one array of 1s if the DIM argument is absent. For
the same conditions, the function UBOUND(3I) returns as the upper bound the
size of the requested dimension or the size of all dimensions in a rank-one array.

When the ARRAY argument is an array name or a structure component with no
section subscript list, there are four cases to distinguish depending on the array
specifier for the name. The following sections describe these four cases.

7.2.8.4.1 Explicit-shape Specifier

The LBOUND(3I) and UBOUND(3I) functions return the declared lower and upper
bounds of the array name or the structure component with no section subscript
list.

INTEGER A(2:10, 11:12)

. . .

TYPE PASSENGER_INFO

INTEGER NUMBER

INTEGER TICKET_IDS(2:500)
END TYPE PASSENGER_INFO

. . .

TYPE(PASSENGER_INFO) PAL, MANY(3:10)

In this example, LBOUND(A) has the value (/ 2, 11 /), and UBOUND(A, 1)
has the value 10. LBOUND(PAL%TICKET_IDS) has the value (/ 2 /) and
UBOUND(MANY%TICKET_IDS(2), 1) has the value 10.

7.2.8.4.2 Assumed-shape Specifier

The name is a dummy argument whose extents are determined by the
corresponding actual argument. The dummy argument may have its lower
bound in a particular dimension specified but if not, the lower bound is defined
to be 1. The LBOUND(3I) function returns these lower bounds. The upper bound
for a particular dimension is the extent of the actual argument in that
dimension, if no lower bound is specified for the dummy argument. It is the
extent minus 1 plus the lower bound if a lower bound is specified. The
UBOUND(3I) function returns these upper bounds.

007–3692–004 253

Fortran Language Reference Manual, Volume 1

REAL C(2:10, 11:12)

. . .
CALL S(C(4:8, 7:9))

CONTAINS

SUBROUTINE S(A)

REAL A(:, 2:)

. . .

! Reference to LBOUND(A) and UBOUND(A)
. . .

Inside the body of subroutine S, LBOUND(A) has the value (/ 1, 2 /),
because the array starts at subscript position 1 by default in the first dimension
and starts at subscript position 2 by declaration in the second dimension.
UBOUND(A) has the value (/ 5, 4 /), because there are five subscript
positions (4 to 8) in the first dimension of the actual argument corresponding to
A, and three subscript positions (7 to 9) in the second dimension of the same
actual argument and the subscripts are specified to start at 2 by the declaration
of the dummy argument A.

7.2.8.4.3 Assumed-size Specifier

The name is a dummy argument whose upper and lower bounds in all but the
last dimension are declared for the dummy argument. The lower bound for the
last dimension may be specified in the assumed-size specifier but, if absent, the
lower bound is 1. The LBOUND(3I) function returns these lower bounds. The
upper bound for all dimensions except the last one is known to the subprogram
but the upper bound in the last dimension is not known. The UBOUND(3I)
function, therefore, must not be referenced with the first argument being the
name of an assumed-size array and no second argument, or the first argument
being the name of an assumed-size array and the second argument specifying
the last dimension of the array. Otherwise, the UBOUND(3I) function returns the
upper bounds as declared for all but the last dimension.

REAL C(2:10, 11:12)

. . .

CALL S (C(4:8, 7:9))

CONTAINS
SUBROUTINE S (A)

REAL A(-2:2, *)

. . .

! Reference to LBOUND(A, 1) and UBOUND(A(:, 2))

! A reference to UBOUND(A) would be illegal.
! A reference to UBOUND(A, 2) would be illegal.

254 007–3692–004

Expressions and Assignments [7]

. . .

Inside the body of subroutine S, LBOUND(A, 1) has the value -2.
UBOUND(A(:, 2)) has the value 5 because A(:,2) is an expression, which is
an array section, not an array name, and has five elements in the first dimension.

7.2.8.4.4 Deferred-shape Specifier

The name is the name of an allocatable array, an array pointer, or a structure
component with one of its part references being a pointer array. As such, if the
array or a part reference has not been allocated or associated with a target, the
LBOUND(3I) and UBOUND(3I) functions must not be invoked with the ARRAY
argument equal to such an array name. If it is an array pointer, either its target
has been allocated by an ALLOCATE statement or its target has become
associated with the pointer using a pointer assignment statement. In the former
case, the LBOUND(3I) and UBOUND(3I) functions return the lower and upper
bounds specified in the ALLOCATE statement. In the latter case, LBOUND is
always 1 in pointer assignment, and UBOUND is the extent of the dimension.
Note that for zero-sized dimensions, LBOUND is always 1 and UBOUND is always
0.

REAL, ALLOCATABLE :: A(:, :)

. . .

ALLOCATE (A(5, 7:9))

. . .! Reference to LBOUND(A) and UBOUND(A)

. . .

After the ALLOCATE statement above is executed, LBOUND(A) has the value (/
1, 7 /), and UBOUND(A) has the value (/ 5, 9 /).

7.2.9 Special Expressions

Expressions can appear in statements other than assignment statements, in
particular in specification statements. In many cases, such expressions are
restricted in some way; for example, the operands in expressions in a
PARAMETER statement are essentially restricted to constants. The standard and
this manual use specific terms for the various categories of expressions allowed
in specific syntactic contexts. For example, the expressions that can be used in
PARAMETER statements are called initialization expressions and can be evaluated
at the time the program is compiled. Initialization expressions are restricted
forms of constant expressions.

007–3692–004 255

Fortran Language Reference Manual, Volume 1

The expressions that can be used as array bounds and character lengths in
specification statements are called specification expressions. These expressions are
scalar and of type integer and can be evaluated on entry to the program unit at
the time of execution. The remainder of this subsection describes and defines
such limited expressions and summarizes where they can be used.

7.2.9.1 Constant Expressions

A constant expression is one of the following constant values or is an expression
consisting of intrinsic operators whose operands are any of the following
constant values:

1. A literal or named constant, or a subobject of a constant where each
subscript, section subscript, or starting and ending point of a substring
range is a constant expression.

2. An array constructor where every subexpression has primaries that are
constant expressions or are implied-DO variables of the array constructor.

3. A structure constructor where each component is a constant expression.

4. An elemental intrinsic function reference that can be evaluated at compile
time.

5. A transformational intrinsic function reference that can be evaluated at
compile time.

6. A reference to NULL(3I).

7. A reference to an intrinsic function that is one of the following:

• An array inquiry function other than ALLOCATED(3I)

• The bit inquiry function BIT_SIZE(3I)

• The character inquiry function LEN(3I)

• The KIND(3I) inquiry function

• A numeric inquiry function

Each argument of the function must be a constant expression or must be a
variable whose type parameters or bounds inquired about are not assumed,
defined by an expression that is not a constant expression, or definable by
an ALLOCATE or pointer assignment statement.

256 007–3692–004

Expressions and Assignments [7]

8. An implied-DO variable within an array constructor in which the bounds
and strides of the corresponding implied-DO are constant expressions.

9. A constant expression enclosed in parentheses.

The restriction in item 4 to intrinsic functions that can be evaluated at
compile-time eliminates the use of the intrinsic functions PRESENT(3I),
ALLOCATED(3I), and ASSOCIATED(3I). It also requires that each argument of the
intrinsic function reference be a constant expression or a variable whose type
parameters or bounds are known at compile time. This restriction excludes, for
example, named variables that are assumed-shape arrays, assumed-size arrays
for inquiries requiring the size of the last dimension, and variables that are
pointer arrays or allocatable arrays. For example, if an array X has explicit
bounds in all dimensions, an inquiry such as SIZE(X) can be computed at
compile-time, and SIZE(X) + 10 is considered a constant expression.

Constant expressions can be used in any executable statement where general
expressions (that is, unrestricted expressions) are permitted.

The following examples show constant expressions:

Expression Meaning

2 An integer literal constant

-7.5_LARGE A real literal constant where
LARGE is a named integer
constant

(/ 7, (I, I = 1, 10) /) An array constructor

RATIONAL(1, 2+J) A structure constructor where
RATIONAL is a derived type
and J is a named integer
constant

LBOUND(A,1)+3 A reference to an inquiry
intrinsic function where A is
an explicit-shape array

INT(N) An intrinsic function
reference where N is a named
constant

KIND(X) An intrinsic function
reference where X is a real
variable with known type
parameter

007–3692–004 257

Fortran Language Reference Manual, Volume 1

REAL(10+I) An intrinsic function
reference where I is a named
integer constant

COUNT(A) An intrinsic function where A
is a named logical constant

I/3.3 + J**3.3 A numeric expression where
I and J are named integer
constants

SUM(A) A reference to a
transformational intrinsic
function where A is a named
integer array constant

7.2.9.2 Initialization Expressions

An initialization expression is a constant expression restricted as follows:

• The exponentiation operator (**) is allowed only when the power (second
operand) is of type integer; that is, X ** Y is allowed only if Y is of type
integer.

• Subscripts, section subscripts, starting and ending points of substring
ranges, components of structure constructors, and arguments of intrinsic
functions must be initialization expressions.

• The elements of array constructors must be initialization expressions or
implied-DOs for which the array constructor values and implied-DO
parameters are expressions whose primaries are initialization expressions or
implied-DO variables.

• An elemental intrinsic function in an initialization expression must have
arguments that are initialization expressions and are of type integer or
character. These elemental intrinsic functions must return a result of type
integer or character.

• A transformational intrinsic function in an initialization expression must be
one of the intrinsic functions NULL(3I), REPEAT(3I), RESHAPE(3I),
SELECTED_INT_KIND(3I), SELECTED_REAL_KIND(3I), TRANSFER(3I), and
TRIM(3I), and must have initialization expressions as arguments; this
excludes the use of the transformational functions ALL(3I), ANY(3I),
COUNT(3I), CSHIFT(3I), DOT_PRODUCT(3I), EOSHIFT(3I), MATMUL(3I),
MAXLOC(3I), MAXVAL(3I), MINLOC(3I), MINVAL(3I), PACK(3I), PRODUCT(3I),
SPREAD(3I), SUM(3I), TRANSPOSE(3I), and UNPACK(3I).

258 007–3692–004

Expressions and Assignments [7]

• An inquiry intrinsic function is allowed, except that the arguments must
either be initialization expressions or variables whose type parameters or
bounds inquired about are not assumed, not defined by an ALLOCATE
statement, or not defined by pointer assignment.

• Any subexpression enclosed in parentheses must be an initialization
expression.

All but the last examples in Section 7.2.9.1, page 256, are initialization
expressions. The last are not because initialization expressions cannot contain
functions that return results of type real (REAL(3I), LOG(3I)), must not reference
certain transformational functions (COUNT(3I), SUM(3I)), or cannot use the
exponentiation operator when the second operand is of type real.

The following are examples of initialization expressions:

Expression Meaning

SIZE(A, 1) * 4 An integer expression where
A is an array with an explicit
shape

KIND(0.0D0) An inquiry function with a
constant argument

SELECTED_REAL_KIND(6, 30) An inquiry function with
constant arguments

SELECTED_INT_KIND(2 * R) An inquiry function with an
argument that is an
initialization expression,
where R is a previously
declared named constant of
type integer

Initialization expressions must be used in the following contexts:

• As initial values following the equal signs in PARAMETER statements and in
type declaration statements with the PARAMETER attribute.

• As initial values following the equal signs in type declaration statements for
variables.

• As expressions in structure constructors in DATA statement value lists.

• As expressions in default initializers.

007–3692–004 259

Fortran Language Reference Manual, Volume 1

• As kind type parameter values in type declaration statements; in this case,
they also must be scalar and of type integer.

• As actual arguments for the KIND(3I) dummy argument of the conversion
intrinsic functions AINT(3I), ANINT(3I), CHAR(3I), INT(3I), LOGICAL(3I),
NINT(3I), REAL(3I), CMPLX(3I); in this case, they also must be scalar and of
type integer.

• As case values in the CASE statement; in this situation, they must be scalar
and of type integer, logical, or character.

• As subscript or substring range expressions of equivalence objects in an
EQUIVALENCE statement; in this case, they must be scalar and of type
integer.

Initialization expressions must be used for situations where the value of the
expression is needed at compile time. Note that the initialization expressions do
not include intrinsic functions that return values of type real, logical, or
complex, or have arguments of type real, logical, or complex.

7.2.9.3 Specification Expressions

A specification expression is a restricted expression that has a scalar value and is
of type integer. Specification expressions are used as bounds for arrays and
length parameter values for character entities in type declarations, attribute
specifications, dimension declarations, and other specification statements (see
Table 15, page 264). A constant specification expression is a specification
expression that is also a constant.

Specification expressions are forms of restricted expressions (defined below),
limited in type and rank. Briefly, a restricted expression is limited to constants
and certain variables accessible to the scoping unit whose values can be
determined on entry to the program unit before any executable statement is
executed. For example, variables that are dummy arguments, are in a common
block, are in a host program unit, or are in a module made accessible to the
program unit can be evaluated on entry to a program unit. Array constructors,
structure constructors, intrinsic function references, and parenthesized
expressions made up of these primaries must depend only on restricted
expressions as building blocks for operands in a restricted expression.

A restricted expression is an expression in which each operation is intrinsic and
each primary is limited to one of the following:

• A constant or constant subobject.

260 007–3692–004

Expressions and Assignments [7]

• A variable that is a dummy argument with neither the OPTIONAL nor the
INTENT(OUT) attribute.

• A variable that is in a common block.

• A variable made accessible from a module.

• A variable from the host program unit.

• A variable accessible through USE association.

• An array constructor in which every expression has primaries that are
restricted expressions or are implied-DO variables of the array constructor.

• A structure constructor in which each component is a restricted expression.

• An elemental intrinsic function whose result is of type integer or character
and whose arguments are all restricted expressions of type integer or
character.

• One of the transformational intrinsic functions (REPEAT(3I), RESHAPE(3I),
SELECTED_INT_KIND(3I), SELECTED_REAL_KIND(3I), TRANSFER(3I), or
TRIM(3I)), in which each argument is a restricted expression of type integer
or character (this excludes the use of the transformational functions ALL(3I),
ANY(3I), COUNT(3I), CSHIFT(3I), DOT_PRODUCT(3I), EOSHIFT(3I),
MATMUL(3I), MAXLOC(3I), MAXVAL(3I), MINLOC(3I), MINVAL(3I), PACK(3I),
PRODUCT(3I), SPREAD(3I), SUM(3I), TRANSPOSE(3I), and UNPACK(3I)).

• An inquiry intrinsic function (except for PRESENT(3I), ALLOCATED(3I), and
ASSOCIATED(3I)), in which each argument is one of the following:

– A restricted expression. Any subscript, section subscript, and starting or
ending point of a substring range is a restricted expression.

– A variable whose bounds or type parameters inquired about are not
assumed, not defined by an ALLOCATE statement, and not defined by a
pointer assignment statement

• A reference to any other intrinsic function in which each argument is a
restricted expression.

• A reference to an external function whose result is a nonpointer scalar
intrinsic type.

• A reference to a specification function in which each argument is a restricted
expression.

007–3692–004 261

Fortran Language Reference Manual, Volume 1

A function is a specification function if it is a pure function, is not an intrinsic
function, is not an internal function, is not a statement function, does not have a
dummy procedure argument, and is not RECURSIVE.

ANSI/ISO: The Fortran standard does not specify restricted expressions in
which a primary can be a reference to an external function that is not a
specification function and with a result that is a nonpointer scalar intrinsic
type.

7.2.9.4 Initialization and Specification Expressions in Declarations

The following rules and restrictions apply to the use of initialization and
specification expressions in specification statements.

The type and type parameters of a variable or named constant in one of these
expressions must be specified in a prior specification in the same scoping unit,
in a host scoping unit, in a module scoping unit made accessible to the current
scoping unit, or by the implicit typing rules in effect. If the variable or named
constant is explicitly given these attributes in a subsequent type declaration
statement, it must confirm the implicit type and type parameters.

If an element of an array is referenced in one of these expressions, the array
bounds must be specified in a prior specification.

If a specification expression includes a variable that provides a value within the
expression, the expression must appear within the specification part of a
subprogram. For example, consider variable N in the following program
segment:

INTEGER N
COMMON N

REAL A (N)

N is providing a value that determines the size of the array A. This program
segment must not appear in a main program but may appear in the
specification part of a subprogram.

A prior specification in the above cases may be in the same specification
statement, but to the left of the reference. For example, the following
declarations are valid:

INTEGER, DIMENSION(4), PARAMETER :: A = (/4, 3, 2, 1 /)

REAL, DIMENSION(A (2)) :: B, C(SIZE(B))

262 007–3692–004

Expressions and Assignments [7]

B and C are of size 3 (the second element of the array A). The following
declaration, however, is invalid because SIZE(E) precedes E:

REAL, DIMENSION(2) :: D(SIZE(E)), E

7.2.9.5 Uses of the Various Kinds of Expressions

The various kinds of expressions may be somewhat confusing, and it can be
difficult to remember where they can be used. To summarize the differences,
Section 7.2.4, page 224, specifies the most general kind of expression; the other
kinds of expressions are restrictions of the most general kind. The classification
of expressions forms two orderings, each from most general to least general, as
follows:

• Expression, restricted expression, and specification expression

• Expression, constant expression, and initialization expression

The relationship between the various kinds of expression can be seen in the
diagram in Figure 16.

General

Restricted

Specification Initialization

Constant

a10641

Figure 16. Relationships between the kinds of expressions

Initialization expressions are not a subset of specification expressions because
the result of an initialization expression can be of any type, whereas the result
of a specification expression must be of type integer and scalar. Also,
specification expressions are not a subset of initialization expressions because
specification expressions allow certain variables (such as dummy arguments

007–3692–004 263

Fortran Language Reference Manual, Volume 1

and variables in common blocks) to be primaries, where as initialization
expressions do not allow such variables.

Table 15, page 264, describes the differences between initialization and
specification expressions. Table 16, page 265, summarizes where each kind of
expression is used and gives the restrictions as to their type and rank when
used in the various contexts. For example, Table 15, page 264, indicates that
initialization and specification expressions are different in that initialization
expressions can be array valued, whereas specification expressions are scalar. A
consequence of this difference, as indicated in Table 16, page 265, is that an
initialization expression is used in a type declaration statement or a PARAMETER
statement to specify the value of a named constant array, whereas a specification
expression is used to specify the bounds of an array in a declaration statement.

Table 15. Differences and similarities between initialization and specification expressions

Kind of expression:

Property: Initialization Specification

Character result Yes No1

Integer result Yes Yes

Scalar result Yes Yes

Array result Yes No

Variables as primaries(limited to dummy arguments, common block
objects, host objects, module objects)

No Yes

Elemental intrinsic functions of type integer and character as
primaries

Yes Yes

Elemental intrinsic functions of type real, complex, logical, and
derived type as primaries

No No

Only constants as primaries Yes No

Only constant subscripts, strides, character lengths Yes No

One of the transformational intrinsic functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, or TRIM
as primaries

Yes Yes

264 007–3692–004

Expressions and Assignments [7]

Kind of expression:

Property: Initialization Specification

Inquiry intrinsic functions (not including ALLOCATED, ASSOCIATED,
or PRESENT) as primaries

Yes Yes

Reference to specific functions No Yes

Reference to scalar external function with intrinsic type result that is
not a specification function2

No Yes

Table 16. Kinds of expressions and their uses

Context
Arb.
expr.

Init.
expr.

Spec.
expr.

Type
3 Rank 4

Default integer expression

Bounds in declaration statement 5 No No Yes I Scalar

Lengths in declaration statement 6 No No Yes I Scalar

Subscripts and substring ranges in
EQUIVALENCE statement

No Yes No I Scalar

Values in CASE statement No Yes No I,L,C Scalar

Kind parameters in declaration statement No Yes No I Scalar

Kind arguments in intrinsics No Yes No I Scalar

Initial value in PARAMETER and type
declaration statement

No Yes No Any Any

DATA implied-DO parameters No 7 No I Scalar

1 Expression results of type character are allowed if they are arguments of an intrinsic function.
2 This is an extension to the Fortran standard.
3 "Any" in this column means any intrinsic or derived type.
4 "Any" in this column means that the result may be a scalar or an array of any rank.
5 The relevant declaration statements are type declaration, component definition, DIMENSION , TARGET , and

COMMON statements.
6 The relevant declaration statements are type declaration, component definition, IMPLICIT, and FUNCTION

statements.
7 A DATA implied-DO parameter may be an expression involving intrinsic operations with constants and DATA

implied-DO variables as operands.

007–3692–004 265

Fortran Language Reference Manual, Volume 1

Context
Arb.
expr.

Init.
expr.

Spec.
expr.

Type
3 Rank 4

Assignment Yes Yes Yes Any Any

Subscripts in executable statement Yes Yes Yes I ≤1

Strides in executable statement Yes Yes Yes I Scalar

Substring ranges in executable statement Yes Yes Yes I Scalar

Expression in SELECT CASE Yes Yes Yes I,L,C Scalar

IF statement Yes Yes Yes L Scalar

Arithmetic IF statement Yes Yes Yes I,R Scalar

DO statement Yes Yes Yes I,R Scalar

Mask in WHERE statement Yes Yes Yes L Array

Mask in WHERE construct Yes Yes Yes L Array

IF-THEN statement Yes Yes Yes L Scalar

ELSE-IF statement Yes Yes Yes L Scalar

Output item list Yes Yes Yes Any Any

I/O specifier values except character FMT=
specifier 8

Yes Yes Yes I,C Scalar

I/O FMT= specifier value Yes Yes Yes C Any

RETURN statement Yes Yes Yes I Scalar

Computed GO TO statement Yes Yes Yes I Scalar

Array constructor implied-DO parameters Yes Yes Yes I Scalar

Actual arguments Yes Yes Yes Any Any

I/O implied-DO parameters Yes Yes Yes I,R Scalar

FORALL triplet_spec_list Yes Yes Yes I Scalar

FORALL scalar_mask Yes Yes Yes L Scalar

Expressions in statement function
definitions

Yes Yes Yes Any Scalar

8 If the I/O FMT= specifier is not of type character, it must be a default integer variable.

266 007–3692–004

Expressions and Assignments [7]

Example 1: The expressions I*3, 1+2*J, 5*J/3, 1, and 10 in the following
statement, are all expressions allowed in subscripts and implied-DO parameter
expressions in an implied-DO list in a DATA statement:

DATA ((A(I*3), I = 1+2*J, 5*J/3), J = 1, 10) /.../

Example 2: An expression such as RADIX(I) is not allowed as a data
implied-DO parameter or subscript of a DATA statement object.

An expression such as N, where N is a variable in the scoping unit that contains
the DATA statement, is not allowed because N is neither a named constant nor
an implied-DO variable in a containing implied-DO list.

Such special expressions in DATA statements are restricted forms of initialization
expressions in the sense that the primaries must not include references to any
intrinsic function. On the other hand, they are extended forms of initialization
expressions in the sense that they permit the use of implied-DO variables that
have the scope of the implied-DO list.

7.3 Interpretation of Expressions

The interpretation of an expression specifies the value of the expression when it
is evaluated. As with the rules for forming an expression, the rules for
interpreting an expression are described from the bottom up, from the
interpretation of constants, variables, constructors, and functions to the
interpretation of each subexpression to the interpretation of the entire
expression.

When an expression is interpreted, the value of each constant and variable is
determined. After these are determined, the operations for which the variables
and constants are interpreted in precedence order, and a value for the operation
is determined by the interpretation rules for each operator. This repeats
recursively until the entire expression is interpreted and a value is determined.

The interpretation rules for operations are of two sorts: rules for the intrinsic
operations (intrinsic operators with operands of the intrinsic types specified by
Table 13, page 242) and rules for the defined operations (provided by the
programmer using function subprograms). Except for integer division, the
intrinsic operations are interpreted by the usual mathematical method, subject
to representation limitations imposed by a computer (for example, a finite range
of integers, or finite precision of real numbers). The defined operations are
interpreted by a function program that is specified in an interface block with a
generic specifier of the form OPERATOR(defined_operator).

007–3692–004 267

Fortran Language Reference Manual, Volume 1

The interpretation rules for an intrinsic or a defined operation are independent
of the context in which the expression occurs. That is, the type, type
parameters, and interpretation of any expression do not depend on any part of
a larger expression in which it occurs.

7.3.1 Interpretation of the Intrinsic Operations

When the arguments of the intrinsic operators satisfy the requirements of Table
13, page 242, the operations are intrinsic and are interpreted in the usual
mathematical way as described in Table 17, page 268, except for integer
division. For example, the binary operator * is interpreted as the mathematical
operation multiplication and the unary operator - is interpreted as negation.

Table 17. Interpretation of the intrinsic operations

Use of operator Interpretation

x1 ** x2 Raise x1 to the power x2

x1 / x2 Divide x1 by x2

x1 * x2 Multiply x1 by x2

x1 - x2 Subtract x2 from x1

- x2 Negate x2

x1 + x2 Add x1 and x2

+ x2 Same as x2

x1 // x2 Concatenate x1 with x2

x1 .LT. x2 x1 less than x2

x1 < x2 x1 less than x2

x1 .LE. x2 x1 less than or equal to x2

x1 <= x2 x1 less than or equal to x2

x1 .GT. x2 x1 greater than x2

x1 > x2 x1 greater than x2

x1 .GE. x2 x1 greater than or equal to x2

x1 >= x2 x1 greater than or equal to x2

x1 .EQ. x2 x1 equal to x2

268 007–3692–004

Expressions and Assignments [7]

Use of operator Interpretation

x1 == x2 x1 equal to x2

x1 .NE. x2 x1 not equal to x2

x1 /= x2 x1 not equal to x2

x1 .LG. x2 x1 less than or greater than x2

x1 <> x2 x1 less than or greater than x2

.NOT. x2 True if x2 is false

x1 .AND. x2 True if x1 and x2 are both true

x1 .OR. x2 True if x1 and/or x2 is true

x1 .NEQV. x2 True if either x1 or x2 is true, but not both

x1 .XOR. x2 1 if corresponding bits differ; 0 otherwise (bitwise
exclusive .OR.)

x1 .EQV. x2 True if both x1 or x2 are true or both are false

7.3.1.1 Interpretation of Numeric Intrinsic Operations

Except for exponentiation to an integer power, when an operand for a numeric
intrinsic operation does not have the same type or type parameters as the result
of the operation, the operand is converted to the type, type parameter, and
shape of the result and the operation is then performed. For exponentiation to
an integer power, the operation can be performed without the conversion of the
integer power, say, by developing binary powers of the first operand and
multiplying them together to obtain an efficient computation of the result.

For integer division, when both operands are of type integer, the result is of
type integer, but the mathematical quotient is often not an integer. In this case,
the result is specified to be the integer value closest to the quotient and between
zero and the quotient inclusively.

For exponentiation, there are three cases that need to be further described.
When both operands are of type integer, the result is of type integer; when x2 is
negative, the operation x1 ** x2 is interpreted as the quotient
1/(x1**ABS(x2)). Note that it is subject to the rules for integer division. For
example, 4**(-2) is 0.

The second case occurs when the first operand is a negative value of type
integer or real and the second operand is of type real. A program is invalid if it
causes a reference to the exponentiation operator with such operands. For

007–3692–004 269

Fortran Language Reference Manual, Volume 1

example, a program that contains the expression (-1.0)**0.5 is an invalid
program.

The third case occurs when the second operand is of type real or of type
complex. In this case, the result returned is the principal value of the
mathematical power function.

7.3.1.2 Interpretation of Standard Nonnumeric Intrinsic Operations

There is only one intrinsic character operation: concatenation. For this
operation, the operands must be of type character. The length parameter values
can be different. The result is of type character with a character length
parameter value equal to the sum of the lengths of the operands. The result
consists of the characters of the first operand in order followed by those of the
second operand in order. For example, ’Fortran’ // ’95’ yields the result
’Fortran 95’.

The intrinsic relational operations perform comparison operations for character
and most numeric operands. For these operations, the operands must both be
of numeric type or both be of character type. The kind type parameter values
of the operands of the numeric types can be different and the lengths of
character operands can be different. Complex operands must only be compared
for equality and inequality; the reason is that complex numbers are not totally
ordered. The result in all cases is of type default logical.

When the operands of an intrinsic relational operation are both numeric, but of
different types or type parameters, each operand is converted to the type and
type parameters they would have if the two operands were being added. Then,
the operands are compared according to the usual mathematical interpretation
of the particular relational operator.

When the operands are both of type character, the shorter one is padded on the
right with blank padding characters until the operands are of equal length.
Then, the operands are compared one character at a time in order, starting from
the leftmost character of each operand until the corresponding characters differ.
The first operand is less than or greater than the second operand according to
whether the characters in the first position where they differ are less than or
greater than each other. The operands are equal if both are of zero length or all
corresponding characters are equal, including the padding characters.

There is no ordering defined for logical values. However, logical values can be
compared for equality and inequality by using the logical equivalence and not
equivalence operators .EQV. and .NEQV.. That is, L1 .EQV. L2 is true when

270 007–3692–004

Expressions and Assignments [7]

L1 and L2 are both true or both false and is false otherwise. L1.NEQV. L2 is
true if either L1 or L2 is true (but not both true) and is false otherwise.

The intrinsic logical operations perform many of the common operations for
logical computation. For these operations, the operands must both be of logical
type but can have different kind type parameters. If the kind type parameter
values are the same, the kind type parameter value of the result is the kind type
parameter value of the operands. If the kind type parameter values are different,
the kind type parameter value is the larger of the two kind type parameter
values. The values of the result in all cases are specified in Table 18, page 271.

Table 18. The values of operations involving logical operators

x1 x2 .NOT.x1 x1.AND.x2 x1.OR.x2 x1.EQV.x2 x1.NEQV.x2

True True False True True True False

True False False False True False True

False True True False True False True

False False True False False True False

7.3.1.3 Interpretation of Intrinsic Operations with Array Operands

Each of the intrinsic operations can have array operands; however, for the
binary intrinsic operations, the operands must both be of the same shape, if
both are arrays. When one operand is an array and the other is a scalar, the
operation behaves as if the scalar operand were broadcast to an array of the
result shape and the operation performed.

For both the unary and binary intrinsic operators, the operation is interpreted
element-by-element; that is, the scalar operation is performed on each element
of the operand or operands. For example, if A and B are arrays of the same
shape, the expression A * B is interpreted by taking each element of A and the
corresponding element of B and multiplying them together using the scalar
intrinsic operation * to determine the corresponding element of the result. Note
that this is not the same as matrix multiplication. As a second example, the
expression -A is interpreted by taking each element of A and negating it to
determine the corresponding element of the result.

007–3692–004 271

Fortran Language Reference Manual, Volume 1

For intrinsic operations that appear in masked assignment statements (in WHERE
blocks, ELSEWHERE blocks, or in a WHERE statement), the scalar operation is
performed only for those elements selected by the logical mask expression.

Note that there is no order specified for the interpretation of the scalar
operations. A processor is allowed to perform them in any order, including all
at the same time.

7.3.1.4 Interpretation of Intrinsic Operations with Pointer Operands

The intrinsic operations can have operands with the POINTER attribute. In such
cases, each pointer must be associated with a target that is defined, and the
value of the target is used as the operand. The target can be scalar or
array-valued; the rules for interpretation of the operation are those appropriate
for the operand being a scalar or an array, respectively.

Recall that an operand can be a structure component that is the component of a
structure variable that is itself a pointer. In this case, the value used for the
operand is the named component of the target structure associated with the
structure variable. For example, consider the following declarations and assume
that the pointer PTR is associated with T:

TYPE RATIONAL

INTEGER :: N, D

END TYPE

TYPE(RATIONAL), POINTER :: PTR

TYPE(RATIONAL), TARGET :: T

If PTR%N appears as an operand, its value is the component N of the target T,
namely T%N.

7.3.2 Interpretation of Defined Operations

The interpretation of a defined operation is provided by a function subprogram
with an OPERATOR interface (see the Fortran Language Reference Manual, Volume
2). When there is more than one function with the same OPERATOR interface,
the function giving the interpretation of the operation is the one whose dummy
arguments match the operands in order, types, kind type parameters, and rank.
For example, for the operation A .PLUS. B, where A and B are structures of
the derived type RATIONAL, the following interface specifies that the function
RATIONAL_PLUS provides the interpretation of this operation.

Example:

272 007–3692–004

Expressions and Assignments [7]

INTERFACE OPERATOR(.PLUS.)

FUNCTION RATIONAL_PLUS(L, R)

USE RATIONAL_MODULE

TYPE(RATIONAL), INTENT(IN) :: L, R

TYPE(RATIONAL) :: RATIONAL_PLUS

END FUNCTION RATIONAL_PLUS

FUNCTION LOGICAL_PLUS(L, R)

LOGICAL, INTENT(IN) :: L, R

LOGICAL :: LOGICAL_PLUS

END FUNCTION LOGICAL_PLUS

END INTERFACE

A defined operation is declared by using a function with one or two dummy
arguments. (Note that the function can be an entry in an external or module
function.)

The dummy arguments to the function represent the operands of the operation.
If there is only one, the operation is a unary operation; otherwise it is a binary
operation. For a binary operation, the first argument is the left operand and the
second is the right operand.

There must be an interface block for the function with the generic specifier of
the form OPERATOR (defined_operator).

The types and kind type parameters of the operands in the expression must be
the same as those of the dummy arguments of the function.

The function is elemental or the rank of the operands in the expression must
match the ranks of the corresponding dummy arguments of the function.

One of the following conditions must be true:

• One of the dummy arguments must be of a derived type

• Both of the dummy arguments are of intrinsic type but do not match the
types and kind type parameters for intrinsic operations as specified in Table
13, page 242.

As with the intrinsic operations, the type, type parameters, and interpretation of
a defined operation are independent of the context of the larger expression in
which the defined operation appears. The interpretation of the same defined
operation in different contexts is the same, but the results can be different

007–3692–004 273

Fortran Language Reference Manual, Volume 1

because the results of the procedure being invoked may depend on values that
are not operands and that are different for each invocation.

The relational operators ==, /=, >, >=, <, <, and <> are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., .LE., and .LG.even when they are
defined operators. It is invalid, therefore, to have an interface block for both ==
and .EQ., for example, for which the order, types, type parameters, and rank of
the dummy arguments of two functions are the same.

ANSI/ISO: The Fortran standard does not describe the <> or .LG. operators.

Defined operations are either unary or binary. An existing unary operator (that
is, one that has the same name as an intrinsic operator) cannot be defined as a
binary operator unless it is also a binary operator. Similarly, an existing binary
operator cannot be defined as a unary operator unless it is also a unary
operator. However, a defined operator, .PLUS. say, (that is, one that does not
have a name that is the same as an intrinsic operator) can be defined as both a
unary and binary operator.

7.4 Evaluation of Expressions

The form of the expression and the meaning of the operations establish the
interpretation; once established, a compiler can evaluate the expression in any
way that provides the same interpretation with one exception; parentheses
specify an order of evaluation that cannot be modified. This applies to both
intrinsic operations and defined operations.

Essentially, two sorts of alternative evaluations are allowed:

• The rearrangement of an expression that yields an equivalent expression; for
example, A + B + C can be evaluated equivalently as A + (B + C) and
would improve the efficiency of the compiled program if B + C were a
subexpression whose value had already been computed.

• The partial evaluation of an expression because the value of the unevaluated
part can be proven not to affect the value of the entire expression. For
example, when one operand of a disjunction (.OR. operator) is known to be
true, the other operand need not be evaluated to determine the result of the
operation. To be specific, the operand A * B < C need not be evaluated in
the expression A < B .OR. A * B < C if A < B is true. This freedom for
a compiler to use alternative equivalent evaluations permits the compiler to
produce code that is more optimal in some sense (for example, fewer
operations, array operations rather than scalar operations, or a reduction in

274 007–3692–004

Expressions and Assignments [7]

the use of registers or work space), and thereby produce more efficient
executable code.

7.4.1 Possible Alternative Evaluations

Before describing in more detail the possible evaluation orders, four basic issues
need to be addressed, namely, definition of operands, well-defined operations,
functions (and defined operations) with side effects, and equivalent
interpretations.

Definition status is described in detail in the Fortran Language Reference Manual,
Volume 2. For the purpose of evaluation of expressions, it is required that each
operand is defined, including all of its parts, if the operand is an aggregate (an
array, a structure, or a string). If the operand is a subobject (part of an array,
structure, or string), only the selected part is required to be defined. If the
operand is a pointer, it must be associated with a target that is defined. An
integer operand must be defined with an integer value rather than a statement
label.

For the numeric intrinsic operations, the operands must have values for which
the operation is well-defined. For example, the divisor for the division
operation must be nonzero, and the result of any of the numeric operations
must be within the exponent range for the result data type; otherwise, the
program is not standard conforming. Other cases include limitations on the
operands of the exponentiation operation **: for example, a zero-valued first
operand must not be raised to a nonpositive second operand; and a
negative-valued first operand of type real cannot be raised to a real power.

The third issue is functions with side effects. In Fortran, functions are allowed
to have side effects; that is, they are allowed to modify the state of the program
so that the state is different after the function is invoked than before it is
invoked. This possibility potentially affects the equivalence of two schemes for
evaluating an expression, particularly if the function modifies objects appearing
in other parts of the expression. However, Fortran prohibits the formation of
statements with these kinds of side effects. That is, a function (or defined
operation) within a statement is not permitted to change any entity in the same
statement. Exceptions are those statements that have statements within them,
for example, an IF statement or a WHERE statement. In these cases, the
evaluation of functions in the logical expressions in parentheses after the IF
keyword or WHERE keyword are allowed to affect objects in the statement
following the closing right parenthesis. For example, if F and G are functions
that change their actual argument I, the following statements are valid, even
though I is changed when the functions are evaluated:

007–3692–004 275

Fortran Language Reference Manual, Volume 1

IF (F(I)) A = I

WHERE (G(I)) B = I

The following statements are examples of statements that are not valid because
F and G change I, which is used elsewhere in the same statement:

A(I) = F(I)

Y = G(I) + I

It is also not valid for there to be two function references in a statement, if each
causes a side effect and the order in which the functions are invoked yields a
different final status, even though nothing in the statement is changed.

The fourth issue is equivalent interpretation. For the numeric intrinsic
operations, the definition of equivalent interpretation is defined as being
mathematical equivalence of the expression, not computational equivalence.
Mathematical equivalence assumes exact arithmetic (no rounding errors and
infinite exponent range) and thus assumes the rules of commutativity,
associativity, and distributivity as well as other rules that can be used to
determine equivalence (except that the order of operations specified by
parentheses must be honored). Under these assumptions, two evaluations are
mathematically equivalent if they yield the same values for all possible values
of the operands. A + B + C and A + (B + C) are thus mathematically
equivalent but are not necessarily computationally equivalent because of
possible different rounding errors. On the other hand, I/2 and 0.5 * I
(where I is an integer) is a mathematical difference because of the special
Fortran definition of integer division.

Table 19, page 276, gives examples of equivalent evaluations of expressions
where A, B, and C are operands of type real or complex, and X, Y, and Z are of
any numeric type. All of the variables are assumed to be defined and have
values that make all of the operations in this table well-defined.

Table 19. Equivalent evaluations for numeric intrinsic operations

Expression Equivalent evaluations

X+Y Y+X

X*Y Y*X

-X+Y Y-X

X+Y+Z X+(Y+Z)

276 007–3692–004

Expressions and Assignments [7]

Expression Equivalent evaluations

X-Y+Z X-(Y-Z)

X*A/Z X*(A/Z)

X*Y-X*Z X*(Y-Z)

A/B/C A/(B*C)

A/5.0 0.2*A

Table 20 provides examples of alternative evaluations that are not valid and are
not mathematically equivalent to the original expression. In addition to the
operands of the same names used in Table 19, Table 20 uses I and J as
operands of type integer. Recall that when both operands of the division
operator are of type integer, a Fortran integer division truncates the result
toward zero to obtain the nearest integer quotient.

Table 20. Nonequivalent evaluations of numeric expressions

Expression Prohibited evaluations

I/2 0.5*I

X*I/J X*(I/J)

I/J/A I/(J*A)

(X+Y)+Z X+(Y+Z)

(X*Y)-(X*Z) X*(Y-Z)

X*(Y-Z) X*Y-X*Z

7.4.2 Partial Evaluations

For character, relational, and logical intrinsic operations, the definition of the
equivalence of two evaluations is that, given the same values for their
operands, each evaluation produces the same result. The definition for
equivalence of two evaluations of the same defined operation also requires the
results to be the same; note that this definition is more restrictive than for the
numeric intrinsic operations, because only mathematical equivalence need be
preserved for numeric operations. As described for numeric intrinsic
operations, a compiler can choose any evaluation scheme equivalent to that
provided by the interpretation. Table 21 gives some equivalent schemes for
evaluating a few example expressions. For these examples, I and J are of type

007–3692–004 277

Fortran Language Reference Manual, Volume 1

integer; L1, L2, and L3 are of type logical; and C1, C2, and C3 are of type
character of the same length. All of the variables are assumed to be defined.

Table 21. Equivalent evaluations of other expressions

Expression Equivalent evaluations

I .GT. J (I-J) .GT. 0

L1 .OR. L2 .OR.
L3

L1 .OR. (L2 .OR. L3)

L1 .AND. L1 L1

C3 = C1//C2 C3=C1 (C1, C2, C3 all of the same length)

These rules for equivalent evaluation schemes allow the compiler to not
evaluate any part of an expression that has no effect on the resulting value of
the expression. Consider the expression X*F(Y), where F is a function and X
has the value 0. The result will be the same regardless of the value of F(Y);
therefore, F(Y) need not be evaluated. This shortened evaluation is allowed in
all cases, even if F(Y) has side effects. In this case every data object that F
could affect is considered to be undefined after the expression is evaluated (that
is, it does not have a predictable value).

The appearance of an array element, an array section, or a character substring
reference requires, in most cases, the evaluation of the expressions that are the
subscripts, strides, or substring ranges. The type or type parameters of the
containing expression are not affected by the evaluation of such subscript,
stride, or substring range expressions. It is not necessary for these expressions
to be evaluated, if the array section can be shown to be zero-sized or the
substring can be shown to be of a zero-length by other means. For example, in
the expression A(1:0) + B(expr1: expr2), expr1 and expr2 need not be
evaluated because the conformance rules for intrinsic operations require that
the section of B be zero-sized.

The type and type parameters, if any, of a constructor are not affected by the
evaluation of any expressions within the constructor.

Parentheses within the expression must be honored. This is particularly
important for computations involving numeric values in which rounding errors
or range errors may occur or for computations involving functions with side
effects.

278 007–3692–004

Expressions and Assignments [7]

7.5 Assignment

The most common use of the result of an expression is to give a value to a
variable. This is done with an assignment statement. For example:

RUG = BROWN + 2.34 / TINT

The forms of intrinsic assignment, defined assignment, and masked array
assignment are the same, and they are defined as follows:

assignment_stmt is variable = expr

Assignment establishes a value for the variable on the left of the assignment
symbol in an assignment statement. Execution of the assignment statement
causes the expression to be evaluated (by performing the computation
indicated), and then the value of the expression is assigned to the variable. If
the variable has subscripts, section subscripts, or a substring range, the
execution of the assignment statement must behave as if they were evaluated
before any part of the value is assigned.

There are four forms of the assignment statement: intrinsic assignment, defined
assignment, pointer assignment, and masked array assignment.

An assignment statement is a defined assignment if the following conditions are
true:

• There is a subroutine subprogram with an assignment interface of the form
ASSIGNMENT (=).

• The types, kind type parameters, and ranks (if arrays) of the variable and
expression match in order the dummy arguments of the subroutine with the
assignment interface.

An assignment statement is a masked array assignment if it appears in a WHERE
construct, WHERE statement, FORALL statement, or FORALL construct; otherwise,
it is an intrinsic or defined assignment.

The form of the pointer assignment statement is similar to the assignment
statement except that the assignment operator is => instead of =.

The rules and restrictions for each of these forms of assignment are different
and are described in the sections below for each form of assignment.

The following examples show the forms of assignment:

007–3692–004 279

Fortran Language Reference Manual, Volume 1

Expression Meaning

X = X + 1.0 Intrinsic assignment for reals

CHAR(1:4) = "A123" Intrinsic assignment for characters

STUDENT = B_JONES Intrinsic assignment for structures if STUDENT
and B_JONES are of the same derived type

STRING = "Brown" Defined assignment for structure if STRING is of
derived type and an interface exists that defines
the operator = for the types STRING and character

X=Y Defined elemental assignment in which X and Y
are both arrays of derived type. In addition, an
interface exists that defines the operator = for the
type and shape of the array, and the specific is
elemental.

WHERE (Z /= 0.0)
A = B / Z
END WHERE

Masked array assignment

PTR => X Pointer assignment

7.5.1 Intrinsic Assignment

Intrinsic assignment can be used to assign a value to a nonpointer variable of
any type or to the target associated with a pointer variable. The assignment
statement defines or redefines the value of the variable or the target, as
appropriate. The value is determined by the evaluation of the expression on the
right side of the equal sign.

The types and kind parameters of the variable and expression in an intrinsic
assignment statement must be of the types given in Table 22, page 280.

Table 22. Types of the variable and expression in an intrinsic assignment

Type of the variable Type of the expression

Integer Integer, real, complex, Boolean, Cray
pointer

Real Integer, real, complex, Boolean

280 007–3692–004

Expressions and Assignments [7]

Type of the variable Type of the expression

Complex Integer, real, complex

Character Character

Logical Logical

Cray pointer Cray pointer, integer, Boolean

Derived type Same derived type as the variable

ANSI/ISO: The Fortran standard does not define Boolean or Cray pointer
types.

If the variable is an array, the expression must either be a scalar or an array of
the same shape as the variable. If the variable is a scalar, the expression must be
a scalar. The shape of the variable can be specified in specification statements if
it is an explicit-shape array. The shape of the variable can be determined by the
section subscripts in the variable, by an actual argument if it is a
assumed-shape array, or by an ALLOCATE statement or a pointer assignment
statement if it is a deferred-shape array. It must not be an assumed-size array
unless there is a vector subscript, a scalar subscript, or a section subscript
containing an upper bound in the last dimension of the array. The shape of the
expression is determined by the shape of the operands, the operators in the
expression, and the functions referenced in the expression. A complete
description of the shape of an expression appears in Section 7.2.8.3, page 252.

If the variable is a pointer, it must be associated with a target; the assignment
statement assigns the value of the expression to the target of the pointer. The
pointer can be associated with a target that is an array; the pointer determines
the rank of the array, but the extents in each dimension are that of the target.

The evaluation of the expression on the right-hand side of the equal sign,
including subscript and section subscript expressions that are part of the
expression and part of the variable, must be performed before any portion of
the assignment is performed. Before the assignment begins, any necessary type
conversions are completed if the variable has a different numeric type or type
parameter from the expression. The conversion is the same as that performed
by the conversion intrinsic functions INT(3I), REAL(3I), CMPLX(3I), and
LOGICAL(3I), as specified in Table 23. On UNICOS and UNICOS/mk systems,
if the expression is of type Boolean or is a BOZ constant, no conversion is done.
On IRIX systems, the result of a Boolean expression is of type integer; no
conversion is done for BOZ or Hollerith constants.

007–3692–004 281

Fortran Language Reference Manual, Volume 1

ANSI/ISO: The Fortran standard does not specify type Boolean or BOZ
constants in assignment statements.

Table 23. Conversion performed on an expression before assignment

Type of the variable Value assigned

Integer INT (expr, KIND (variable))

Real REAL (expr, KIND (variable))

Complex CMPLX (expr, KIND (variable))

Logical LOGICAL (expr, KIND (variable))

An expression can use parts of the variable that appear on the left side of an
assignment statement. For example, in evaluating a character string expression
on the right-hand side of an assignment, the values in the variable on the
left-hand side can be used, as in the following example:

DATE(2:5) = DATE(1:4)

If the variable and expression are of character type with different lengths, the
assignment occurs as follows:

• If the length of the variable is less than that of the expression, the value of
the expression is truncated from the right.

• If the length of the variable is greater than the expression, the value of the
expression is filled with blanks on the right.

The evaluation of expressions in the variable on the left-hand side, such as
subscript expressions, has no effect on, nor is affected by, the evaluation of the
expression on the right-hand side, which is evaluated completely first. As
usual, this requirement that the expression on the right be evaluated first is
specifying the semantics of the statement and does not imply that an
implementation must perform the computation in this way if there is an
equivalent order that computes the same result.

When a scalar is assigned to an array, the assignment behaves as if the scalar is
broadcast to an array of the shape of the variable; it is then in shape
conformance with the variable. In the following example, all ten elements of the
array A are assigned the value 1.0:

REAL A(10)
A = 1.0

282 007–3692–004

Expressions and Assignments [7]

Array assignment is element-by-element, but the order is not specified. Assume
that A and B are real arrays of size 10, and the whole array assignment is as
follows:

A = B

The first element of B would be assigned to the first element of A, the second
element of B would be assigned to the second element of A, and this would
continue element-by-element for 10 elements. The assignment of elements,
however, may be performed in any order.

For derived-type intrinsic assignment, the derived types of the variable and the
expression must be the same. Derived-type intrinsic assignment is performed
component-by-component following the above rules, except when a component
is a pointer. For pointer components, pointer assignment between
corresponding components is used.

7.5.2 Defined Assignment

A defined assignment is an assignment operation provided by a subroutine with
an assignment interface ASSIGNMENT (=). When the variable and expression
in the assignment statement are of intrinsic types and do not satisfy the type
matching rules described in Table 22, page 280, or are of derived type, a defined
assignment operation will be used, provided the assignment interface and
subroutine are accessible. For example, a defined assignment may apply when
an integer object is to be assigned to a logical variable, provided a subroutine
with a generic assignment interface is accessible. Assignment thus can be
extended to types other than the intrinsic types or can replace the intrinsic
assignment operation for derived types, if the programmer defines the rules for
this assignment in a subroutine. For more information on the assignment
interface, see the Fortran Language Reference Manual, Volume 2.

An assignment operation is declared by using a subroutine with two dummy
arguments.

The dummy arguments to the subroutine represent the variable and the
expression, in that order.

There must be an interface block for the subroutine with the generic specifier of
the form ASSIGNMENT(=).

The types and kind type parameters of the variable and expression in the
assignment statement must be the same as those of the dummy arguments.

007–3692–004 283

Fortran Language Reference Manual, Volume 1

The rank of the variable and the expression in the assignment must match the
ranks of the corresponding dummy arguments.

One of the following conditions must be true:

• One of the dummy arguments must be of a derived type

• Both of the dummy arguments are of intrinsic type but do not match the
types and kind type parameters for intrinsic operations as specified in Table
22, page 280.

• The subroutine is elemental, and either both dummy arguments have the
same shape or one is scalar.

Example:

INTERFACE ASSIGNMENT (=)

SUBROUTINE RATIONAL_TO_REAL(L, R)
USE RATIONAL_MODULE

TYPE(RATIONAL), INTENT(IN) :: R

REAL, INTENT(OUT) :: L

END SUBROUTINE RATIONAL_TO_REAL

SUBROUTINE REAL_TO_RATIONAL(L, R)
USE RATIONAL_MODULE

REAL, INTENT(IN) :: R

TYPE(RATIONAL), INTENT(OUT) :: L

END SUBROUTINE REAL_TO_RATIONAL

END INTERFACE

The preceding interface block specifies two defined assignments for two
assignment operations in terms of two external subroutines, one for assignment
of objects of type RATIONAL to objects of type real, and the other for
assignment of objects of type real to objects of type RATIONAL. With this
interface block, the following assignment statements are defined:

REAL R_VALUE

TYPE(RATIONAL) RAT_VALUE

R_VALUE = RATIONAL(1, 2)
RAT_VALUE = 3.7

The effect of the defined assignment on variables in the program is determined
by the referenced subroutine.

284 007–3692–004

Expressions and Assignments [7]

7.5.3 Pointer Assignment

A pointer is a variable with the POINTER attribute that points to another object.
The term pointer association is used for the concept of "pointing to" and the term
target is used for the object associated with a pointer.

A pointer assignment associates a pointer with a target. If the target is
disassociated or undefined, the pointer becomes disassociated or undefined
according to the status of the target.

Once a pointer assignment has been executed, the association status of the
pointer remains unchanged until one of the following events occurs:

• Another pointer assignment statement is executed that redefines the pointer.

• An ALLOCATE, DEALLOCATE, or NULLIFY statement is executed that
redefines the pointer.

• A RETURN statement is executed. This changes the association status only if
the pointer is local to the subprogram containing the return and the pointer
does not have the SAVE attribute.

The pointer assignment statement is defined as follows:

pointer_assignment_stmt is pointer_object => target

pointer_object is variable_name

or structure_component

target is variable

or expr

If the pointer object is a variable name, the name must have the POINTER
attribute. If the pointer object is a structure component, the component must
have the POINTER attribute.

The form of the expression permitted as a target is severely limited.

If the target is a variable, then it must have one of the following characteristics:

• It must have the TARGET attribute.

• It must be the component of a structure, the element of an array variable, or
the substring of a character variable that has the TARGET attribute.

007–3692–004 285

Fortran Language Reference Manual, Volume 1

• It must have the POINTER attribute.

The type, kind type parameters (including length, if character), and rank of the
target must be the same as the pointer object.

If the variable on the right of => has the TARGET attribute, the pointer object on
the left of => becomes associated with this target.

If the variable on the right of => has the POINTER attribute and is associated,
the pointer object on the left of => points to the same data that the target points
to after the pointer assignment statement is executed.

If the variable on the right of => has the POINTER attribute and is
disassociated, or if it is a reference to the NULL(3I) intrinsic, the pointer object
on the left of => becomes disassociated.

If the variable on the right of => has the POINTER attribute and has an
undefined association status, the association status of the pointer object on the
left of => becomes undefined.

A pointer assignment statement terminates any previous association for that
pointer and creates a new association.

If the pointer object is a deferred-shape array, the pointer assignment statement
establishes the extents for each dimension of the array, unless the target is a
disassociated or undefined pointer. Except for the case of a disassociated or
undefined pointer, the extents are those of the target. For example, if the
following statements have been processed, the extents of P1 are those of T,
namely 11 and 20, but those of P2 are 1 and 10, because T(:) has a section
subscript list:

INTEGER, TARGET :: T(11:20)

INTEGER, POINTER :: P1(:), P2(:)

P1 => T
P2 => T(:)

The target must not be a variable that is an assumed-size array. If it is an array
section of an assumed-size array, the upper bound for the last dimension must
be specified.

If the target is an array section, it must not have a vector subscript.

If the target is an expression, it must deliver a pointer result. This implies that
the expression must be a user-defined function reference or defined operation
that returns a pointer (there are no intrinsic operations or functions that return

286 007–3692–004

Expressions and Assignments [7]

results with the POINTER attribute). This also implies that a pointer can never
point at a constant because constants cannot have the TARGET attribute.

If the target of a pointer cannot be referenced or defined, the pointer must not
be referenced or defined.

If a structure has a component with the POINTER attribute and the structure is
assigned a value using an intrinsic derived-type assignment, pointer assignment
is used for each component with the POINTER attribute. Also, defined
assignment may cause pointer assignment between some components of a
structure.

Note that when a pointer appears on the right side of => in a pointer
assignment, the pointer on the left side of => is defined or redefined to be
associated with the target on the right side of the =>; neither the pointer on the
right nor its target are changed in any way.

General examples:

MONTH => DAYS(1:30)

PTR => X(:, 5)

NUMBER => JONES % SOCSEC

Example 1: In this example, the target is another pointer:

REAL, POINTER :: PTR, P
REAL, TARGET :: A

REAL B

A = 1.0

P => A

PTR => P
B = PTR + 2.0

The previous program segment defines A with the value 1.0, associates P with
A; then PTR is associated with A as well (through P). The value assigned to B in
the regular assignment statement is 3.0, because the reference to PTR in the
expression yields the value of the target A which is the value 1.0.

Example 2: In this example, the target is an expression:

INTERFACE

FUNCTION POINTER_FCN(X)

REAL X

REAL, POINTER :: POINTER_FCN

END FUNCTION
END INTERFACE

007–3692–004 287

Fortran Language Reference Manual, Volume 1

REAL, POINTER :: P
REAL A

P => POINTER_FCN(A)

In this example, the function POINTER_FCN takes a real argument and returns a
pointer to a real target. After execution of the pointer assignment statement, the
pointer P points to this real target.

Pointers can become associated by using the ALLOCATE statement instead of a
pointer assignment statement. Pointers can become disassociated by using the
DEALLOCATE or NULLIFY statements, as well as with the pointer assignment
statement.

A pointer can be used in an expression (see Section 7.3.1.4, page 272, for the
details). Briefly, any reference to a pointer in an expression, other than in a
pointer assignment statement, or in certain procedure references, yields the
value of the target associated with the pointer. When a pointer appears as an
actual argument corresponding to a dummy argument that has the POINTER
attribute, the reference is to the pointer and not the value. Note that a
procedure must have an explicit interface if it has a dummy argument with the
POINTER attribute. For information on explicit interfaces, see the Fortran
Language Reference Manual, Volume 2.

7.5.4 Masked Array Assignment

Sometimes it is desirable to assign only certain elements of one array to another
array. To invert the elements of an array element-by-element, for example, you
have to avoid elements that are 0. The masked array assignment is ideal for
such selective assignment, as the following example using a WHERE construct
illustrates:

REAL A(10,10)

...

WHERE (A /= 0.0)
RECIP_A = 1.0 / A ! Assign only where the

! elements are nonzero

ELSEWHERE

RECIP_A = 1.0 ! Use the value 1.0 for

! the zero elements
END WHERE

288 007–3692–004

Expressions and Assignments [7]

The first array assignment statement is executed for only those elements where
the mask A /= 0.0 is true. Next, the second assignment statement (after the
ELSEWHERE statement) is executed for only those elements where the same
mask is false. If the values of RECIP_A where A is 0 are never used, this
example can be simply written by using the WHERE statement, rather than the
WHERE construct, as follows:

WHERE (A /= 0.0) RECIP_A = 1.0 / A

A masked array assignment is an intrinsic assignment statement in a WHERE block,
an ELSEWHERE block, or a WHERE statement for which the variable being
assigned is an array. The WHERE statement and WHERE construct appear to have
the characteristics of a control statement or construct such as the IF statement
and IF construct. But there is a major difference: every assignment statement
in a WHERE construct is executed, whereas at most one block in the IF construct
is executed. Similarly, the assignment statement following a WHERE statement is
always executed. For this reason, WHERE statements and constructs are
discussed here under assignment rather than under control constructs.

In a masked array assignment, the assignment is made to certain elements of an
array based on the value of a logical array expression serving as a mask for
picking out the array elements. The logical array expression acts as an
array-valued condition on the elemental intrinsic operations, functions, and
assignment for each array assignment statement in the WHERE statement or
WHERE construct.

As in an intrinsic array assignment, a pointer to an array can be used as the
variable, and a pointer to a scalar or an array can be used as a primary in the
expression. If the target of the pointer is an array, the target array is masked in
the same manner as a nonpointer array used in a masked array assignment.

7.5.4.1 WHERE Statement and Construct

The WHERE construct is defined as follows:

007–3692–004 289

Fortran Language Reference Manual, Volume 1

where_stmt is WHERE (mask_expr) where_assignment_stmt

where_construct is where_construct_stmt
[where_body_construct] ...

[masked_elsewhere_stmt
[where_body_construct] ...] ...

[elsewhere_stmt
[where_body_construct] ...]

end_where_stmt

where_construct_stmt is [where_construct_name:] WHERE (mask_expr)

where_body_construct is where_assignment_stmt

or where_stmt

or where_construct

where_assignment_stmt is assignment_stmt

mask_expr is logical_expr

masked_elsewhere_stmt is ELSEWHERE (mask_expr) [where_construct_name]

elsewhere_stmt is ELSEWHERE [where_construct_name]

end_where_stmt is END WHERE [where_construct_name]

The definition of the WHERE construct can be simplified to the following general
format:

WHERE (condition_1) ! STATEMENT_1
...
ELSEWHERE (condition_2) ! STATEMENT_2
...
ELSEWHERE ! STATEMENT_3
...
END WHERE

The following information applies to the preceding general format:

• Following execution of STATEMENT_1, the control mask has the value
condition_1 and the pending control mask has the value .NOT.condition_1.

• Following execution of STATEMENT_2, the control mask has the value
(.NOT.condition_1).AND.condition_2 and the pending control mask has the
value (.NOT.condition_1).AND.(.NOT.condition_2).

290 007–3692–004

Expressions and Assignments [7]

• Following execution of STATEMENT_3, the control mask has the value
(.NOT.condition_1).AND.(.NOT.condition_2).

• The false condition values are propogated through the execution of the
masked ELSEWHERE statement.

If an array constructor appears in a where_assignment_stmt or in a mask_expr, the
array constructor is evaluated without any masked control. After that, the
where_assignment_stmt is executed or the mask_expr is evaluated.

When a where_assignment_stmt is executed, the values of expr that correspond to
true values of the control mask are assigned to the corresponding elements of
variable.

A statement that is part of a where_body_construct must not be a branch target
statement. The value of the control mask is established by the execution of a
WHERE statement, a WHERE construct statement, an ELSEWHERE statement, a
masked ELSEWHERE statement, or an ENDWHERE statement. Subsequent
changes to the value of entities in a mask_expr have no effect on the value of the
control mask. The execution of a function reference in the mask expression of a
WHERE statement is permitted to affect entities in the assignment statement.
Execution of an END WHERE has no effect.

If the where_construct_stmt has a where_construct_name, then the corresponding
end_where_stmt must specify the same name. If the construct also has an
elsewhere_stmt or masked_ elsewhere_stmt, it must have the same
where_construct_name. If no where_construct_name is specified for the
where_construct, then the end_where_stmt and any elsewhere_stmt or
masked_elsewhere_stmt must have the where_construct_name.

In a WHERE construct, only the WHERE construct statement can be labeled as a
branch target statement.

The WHERE block is the set of assignments between the WHERE construct
statement and the ELSEWHERE statement (or END WHERE statement, if the
ELSEWHERE statement is not present). The ELSEWHERE block is the set of
assignment statements between the ELSEWHERE and the END WHERE statements.

Each assignment in the ELSEWHERE block assigns a value to each array element
that corresponds with a mask array element that is false.

The ELSEWHERE block is optional; when it is not present, no assignment is
made to elements corresponding to mask array elements that are false.

All of the assignment statements are executed in sequence as they appear in the
construct (in both the WHERE and ELSEWHERE blocks).

007–3692–004 291

Fortran Language Reference Manual, Volume 1

Any elemental intrinsic operation or function within an array assignment
statement is evaluated only for the selected elements. In the following example,
the square roots are taken only of the elements of A that are positive:

REAL A(10, 20)

...

WHERE (A > 0.0)

SQRT_A = SQRT(A)
END WHERE

An elemental function reference is evaluated independently for each element,
and only those elements needed in the array assignment are referenced. A
where_assignment_stmt that is a defined assignment must be elemental.

The expression in the array assignment statement can contain nonelemental
function references. Nonelemental function references are references to any
function or operation defined by a subprogram, without the ELEMENTAL
keyword. All elements of the arguments of such functions and returned results
(if arrays) are evaluated in full. If the result of the nonelemental function is an
array and is an operand of an elemental operation or function, then only the
selected elements are used in evaluating the remainder of the expression.

Example 1:

REAL A(2, 3), B(3, 10), C(2, 10), D(2, 10)

INTRINSIC MATMUL

...

WHERE (D < 0.0)

C = MATMUL(A, B)
END WHERE

The matrix product A multiplied by B is performed, yielding all elements of the
product, and only for those elements of D that are negative are the assignments
to the corresponding elements of C made.

Example 2:

WHERE (TEMPERATURES > 90.0) HOT_TEMPS = TEMPERATURES

WHERE (TEMPERATURES < 32.0) COLD_TEMPS = TEMPERATURES

Example 3:

WHERE (TEMPERATURES > 90.0)
NUMBER_OF_SWEATERS = 0

ELSEWHERE (TEMPERATURES < 0.0)

NUMBER_OF_SWEATERS = 3

292 007–3692–004

Expressions and Assignments [7]

ELSEWHERE (TEMPERATURES < 40)

NUMBER_OF_SWEATERS = 2
ELSEWHERE

NUMBER_OF_SWEATERS = 1

ENDWHERE

7.5.4.2 Differences between the WHERE Construct and Control Constructs

One major difference between the WHERE construct and control constructs has
been described in Section 7.5.4, page 288. Another difference is that no transfers
out of WHERE or ELSEWHERE blocks are possible (except by a function reference)
because only intrinsic assignment statements are permitted within these blocks.
Note that the execution of statements in the WHERE block can affect variables
referenced in the ELSEWHERE block (because the statements in both blocks are
executed).

7.5.5 FORALL Statement and Construct

FORALL statements and constructs control the execution of assignment and
pointer assignment statements with selection by using index values and an
optional mask expression.

7.5.5.1 FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE)
assignments, and nested FORALL constructs and statements to be controlled by
a single forall_triplet_spec_list and scalar_mask.

The format of the FORALL construct is as follows:

forall_construct is forall_construct_stmt
[forall_body_construct] ...

end_forall_stmt

forall_construct_stmt is [forall_construct_name:] FORALL forall_header

forall_header is (forall_triplet_spec_list [, scalar_mask_expr])

forall_triplet_spec is index_name = subscript : subscript [: stride]

subscript is scalar_int_expr

stride is scalar_int_expr

007–3692–004 293

Fortran Language Reference Manual, Volume 1

forall_body_construct is forall_assignment_stmt

or where_stmt

or where_construct

or forall_construct

or forall_stmt

forall_assignment_stmt is assignment_stmt

or pointer_assignment_stmt

end_forall_stmt is END FORALL [forall_construct_name]

If the forall_construct_stmt has a forall_construct_name, the end_forall_stmt must
have the same forall_construct_name. If the end_forall_stmt has a
forall_construct_name, the forall_construct_stmt must have the same
forall_construct_name.

The scalar_mask_expr must be scalar and of type logical.

A procedure that is referenced in the scalar_mask_expr, including one referenced
by a defined operation, must be a pure procedure.

A procedure that is referenced in a forall_body_construct, including one
referenced by a defined operation or assignment, must be a pure procedure.

The index_name must be a named scalar variable of type integer.

A subscript or stride in a forall_triplet_spec must not contain a reference to any
index_name in the forall_triplet_spec_list in which it appears.

A statement in a forall_body_construct must not define an index_name of the
forall_construct.

A forall_body_construct must not be a branch target.

Example:

REAL :: A(10, 10), B(10, 10) = 1.0

...

FORALL (I = 1:10, J = 1:10, B(I, J) /= 0.0)

A(I, J) = REAL (I + J - 2)

B(I, J) = A(I, J) + B(I, J) * REAL (I * J)

END FORALL

294 007–3692–004

Expressions and Assignments [7]

Each forall_body_construct is executed in the order in which it appears. Each
construct is executed for all active combinations of the index_name values.

Execution of a forall_assignment_stmt that is an assignment_stmt causes the
evaluation of expr and all expressions within variable for all active combinations
of index_name values. After all evaluations have been performed, each expr
value is assigned to the corresponding variable.

Execution of a forall_assignment_stmt that is a pointer_assignment_stmt causes the
evaluation of all expressions within target and pointer_object, the determination
of any pointers within pointer_object, and the determination of the target for all
active combinations of index_name values. After these evaluations have been
performed, each pointer_object is associated with the corresponding target.

In a forall_assignment_stmt, a defined assignment subroutine must not reference
any variable that becomes defined or a pointer_object that becomes associated by
the statement.

The following code fragment shows a FORALL construct with two assignment
statements. The assignment to array B uses the values of array A computed in
the previous statement, not the values A had prior to execution of the FORALL:

FORALL (I = 2:N-1, J = 2:N-1)

A (I, J) = A(I, J-1) + A(I,J+1) + A(I-1,J) + A(I+1, J)

B (I, J) = 1.0 / A(I, J)

END FORALL

The following code fragment shows how to avoid an error condition by using
an appropriate scalar_mask_expr that limits the active combinations of the
index_name values:

FORALL (I = 1:N, Y(I) .NE. 0.0)

X(I) = 1.0 / Y(I)
END FORALL

Each statement in a where_construct within a forall_construct is executed in
sequence. When a where_stmt, where_construct_stmt, or masked_elsewhere_stmt is
executed, the statement’s mask_expr is evaluated for all active combinations of
index_name values as determined by the outer forall_constructs, masked by any
control mask corresponding to outer where_constructs. Any
where_assignment_stmt is executed for all active combinations of index_name
values, masked by the control mask in effect for the where_assignment_stmt. The
following FORALL construct contains a WHERE statement and an assignment
statement:

007–3692–004 295

Fortran Language Reference Manual, Volume 1

INTEGER A(5,4), B(5,4)

FORALL (I = 1:5)
WHERE (A(I,:) .EQ. 0) A(I,:) = I

B (I,:) = I / A(I,:)

END FORALL

The preceding code is executed with array A as follows::

0 0 0 0

1 1 1 0
A = 2 2 0 2

1 0 2 3

0 0 0 0

The result is as follows:

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 1

A = 2 2 3 2 B = 1 1 1 1
1 4 2 3 4 1 2 1

5 5 5 5 1 1 1 1

When a forall_stmt or forall_construct is executed, the compiler evaluates the
subscript and stride expressions in the forall_triplet_spec_list for all active
combinations of the index_name values of the outer FORALL construct. The set
of combinations of index_name values for the inner FORALL is the union of the
sets defined by these bounds and strides for each active combination of the
outer index_name values; it also includes the outer index_name values. The
scalar_mask_expr is then evaluated for all combinations of the index_name values
of the inner construct to produce a set of active combinations for the inner
construct. If no scalar_mask_expr is specified, the compiler uses .TRUE. as its
value. Each statement in the inner FORALL is then executed for each active
combination of the index_name values. The following FORALL construct contains
a nested FORALL construct. It assigns the transpose of the lower triangle of
array A, which is the section below the main diagonal, to the upper triangle of
A. The code fragment is as follows:

INTEGER A (3, 3)
FORALL (I = 1:N-1)

FORALL (J=I+1:N)

A(I,J) = A(J,I)

END FORALL

END FORALL

Prior to execution of the preceding code, N=3 and array A is as follows:

296 007–3692–004

Expressions and Assignments [7]

0 3 6

A = 1 4 7
2 5 8

After the preceding code is executed, array A is as follows:

0 1 2

A = 1 4 5
2 5 8

You could also use the following FORALL statement to obtain identical results:

FORALL (I = 1:N-1, J=1:N, J > I) A(I,J) = A(J,I)

For more information on the FORALL statement, see Section 7.5.5.2, page 297.

7.5.5.2 FORALL Statement

The FORALL statement allows a single assignment statement or pointer
assignment to be controlled by a set of values and an optional mask expression.
The format for this statement is as follows:

forall_stmt is FORALL forall_header forall_assignment_stmt

Execution of a FORALL statement starts with the evaluation of the
forall_triplet_spec_list for each index_name variable. All possible combinations of
the values of the index_name variables are considered for execution of the
FORALL body. The mask expression, if present, is then evaluated for each
combination of index_name values and each combination that has a .TRUE.
outcome is in the active combination of index_name values. This set of active
combinations is then used in executing the FORALL body.

A FORALL statement is equivalent to a FORALL construct that contains a single
forall_body_construct that is a forall_assignment_stmt.

The scope of an index_name in a forall_stmt is the statement itself.

The following FORALL statement assigns the elements of vector X to the
elements of the main diagonal of matrix A:

FORALL (I=1:N) A(I,I) = X(I)

007–3692–004 297

Fortran Language Reference Manual, Volume 1

In the following FORALL statement, array element X(I,J) is assigned the value
(1.0 / REAL (I+J-1)) for values of I and J between 1 and N, inclusive:

FORALL (I = 1:N, J = 1:N) X(I,J) = 1.0 / REAL (I+J-1)

The following statement takes the reciprocal of each nonzero off-diagonal
element of array Y(1:N, 1:N) and assigns it to the corresponding element of
array X. Elements of Y that are zero or are on the diagonal do not participate,
and no assignments are made to the corresponding elements of X:

FORALL (I=1:N, J=1:N, Y(I,J) /= 0 .AND. I /= J) X(I,J) = 1.0 / Y(I,J)

7.5.5.3 Restrictions on FORALL Constructs and Statements

A many-to-one assignment is more than one assignment to the same object or
subobject, or association of more than one target with the same pointer, whether
the object is referenced directly or indirectly through a pointer. A many-to-one
assignment must not occur within a single statement in a FORALL construct or
statement. It is possible to assign, or pointer assign, to the same object in
different assignment statements in a FORALL construct.

The appearance of each index_name in the identification of the left-hand side of
an assignment statement is helpful in eliminating many-to-one assignments, but
it is not sufficient to guarantee that there will be none. The following code
fragment is permitted only if INDEX(1:10) contains no repeated values:

FORALL (I = 1:10)

A (INDEX (I)) = B(I)

END FORALL

Within the scope of a FORALL construct, a nested FORALL statement or FORALL
construct cannot have the same index_name. The forall_header expressions within
a nested FORALL can depend on the values of outer index_name variables.

298 007–3692–004

Controlling Execution [8]

A program performs its computation by executing the statements in sequence
from beginning to end. Control constructs and branching statements modify
this normal sequential execution of a program. The modification can select
blocks of statements and constructs for execution or repetition, or can transfer
control to another statement in the program.

As outlined in Chapter 2, page 7, the statements and constructs making up a
program are of two sorts, nonexecutable and executable. The nonexecutable
statements establish the environment under which the program runs. The
executable statements and executable constructs, some of which are action
statements, perform computations, assign values, perform input/output (I/O)
operations, or control the sequence in which the other executable statements
and constructs are executed. This chapter describes the latter group of
executable statements, the control statements and control constructs.

Control constructs and control statements alter the usual sequential execution
order of statements and constructs in a program. This execution order is called
the normal execution sequence. The control constructs are block constructs and
consist of the IF construct, the DO construct, and the CASE construct. A
nonblock form of the DO construct is also available. Individual statements that
alter the normal execution sequence include the CYCLE and EXIT statements
which are special statements for DO constructs, branch statements such as
arithmetic IF statements, various forms of GO TO statements, and the
statements that cause execution to cease such as the STOP and PAUSE
statements.

With any of the block constructs, a construct name can be used to identify the
construct and to identify which DO construct, particularly in a nest of DO
constructs, is being terminated or cycled when using the EXIT or CYCLE
statements.

8.1 The Execution Sequence

There is an established execution sequence for action statements in a Fortran
program. Normally, a program or subprogram begins with the first executable
statement in that program or subprogram and continues with the next
executable statement in the order in which these statements appear. However,
there are executable constructs and statements that cause statements to be

007–3692–004 299

Fortran Language Reference Manual, Volume 1

executed in an order that is different from the order in which they appear in the
program. These are either control constructs or branching statements.

There are two basic ways to affect the execution sequence. One is to use an
executable construct that selects a block of statements and constructs for
execution. The second is to execute a statement that branches to a specific
statement in the program. In almost all cases, the use of constructs will result in
programs that are more readable and maintainable, so constructs are discussed
first, followed by branching statements.

8.2 Blocks and Executable Constructs

A control construct consists of one or more blocks of statements and constructs
and the control logic that explicitly or implicitly encloses these blocks. Based on
a control condition, a block of statements and constructs is selected for
execution. A block is a sequence of zero or more statements and constructs, and
it is defined as follows:

block is [execution_part_construct ...]

A block of statements and constructs is treated as a whole. Either the block as a
whole is executed or it is not executed. Whether or not the block is executed is
determined by expressions in the control logic of the construct. Note that not
every statement or construct in the block need be executed; for example, a
branch statement early in the block can prevent subsequent statements in the
block from being executed. This is still considered a complete execution of the
block.

An executable construct consists of one or more blocks of statements
surrounded by control statements. The construct usually contains an initial
statement before a block and a terminal statement after the block. The construct
includes conditions that determine which block in the construct is executed.

There are three executable constructs that contain blocks:

• IF construct

• CASE construct

• DO construct

300 007–3692–004

Controlling Execution [8]

There is also a construct called the WHERE construct that controls array
assignment for individual elements (masked array assignment) as opposed to
controlling flow of the program statements. Even though it looks like a control
construct, it really is a construct for unconditional but masked array assignment.
For information on masked array assignment, see Section 7.5.4, page 288.

Construct names are described in the introductory material for blocks and also
with each construct and statement that uses them. The name, if used, must
appear on the same line as the initial statement of the construct and a matching
name must appear on the terminal statement of the construct.

Some of the general rules and restrictions that apply to blocks and control of
blocks are as follows:

• The statements of a block are executed in order unless there is a control
construct or statement within the block that changes the sequential order.

• A block, as an integral unit, must be completely contained within a construct.

• A block can be empty; that is, it can contain no statements or constructs at
all.

• A branching or control construct within a block that transfers to a statement
or construct within the same block is permitted.

• Branching to a statement or construct within a block from outside the block
is prohibited. (Even branching to the first executable statement within a
block from outside the block is prohibited.)

• Exiting from a block can be done from anywhere within the block.

• References to procedures are permitted within a block.

8.3 IF Construct and IF Statement

An IF construct selects at most one block of statements and constructs within
the construct for execution. The IF statement controls the execution of only one
statement; in previous Fortran standards it was called the logical IF statement.
The arithmetic IF statement is not the same as the IF statement; it is a
branching statement that is designated as obsolescent.

007–3692–004 301

Fortran Language Reference Manual, Volume 1

8.3.1 The IF Construct

The IF construct contains one or more executable blocks. At most one block is
executed. It is possible for no block to be executed when there is no ELSE
statement.

8.3.1.1 Form of the IF Construct

The IF construct is defined as follows:

if_construct is if_then_stmt
block

[else_if_stmt
block] ...

[else_stmt
block]

end_if_stmt

if_then_stmt is [if_construct_name :] IF (scalar_logical_expr) THEN

else_if_stmt is ELSE IF (scalar_logical_expr) THEN [if_construct_name]

else_stmt is ELSE [if_construct_name]

end_if_stmt is END IF [if_construct_name]

Branching to an ELSE IF or an ELSE statement is prohibited.

Branching to an END IF statement is allowed from any block within the IF
construct.

If a construct name appears on the IF-THEN statement, the same name must
appear on the corresponding END IF statement.

The construct names on the ELSE IF and ELSE statements are optional, but if
present must be the same name as the one on the IF-THEN statement. If one
such ELSE IF or ELSE statement has a construct name, the others are not
required to have a construct name.

The same construct name must not be used for different named constructs in
the same scoping unit; thus, two IF constructs must not be both named INNER
in the same executable part, for example.

302 007–3692–004

Controlling Execution [8]

8.3.1.2 Execution of the IF Construct

The logical expressions are evaluated in order until one is found to be true. The
block following the first true condition is executed, and the execution of the IF
construct terminates. Subsequent true conditions in the construct have no effect.
There may be no logical expressions found to be true in the construct. In this
case, the block following the ELSE statement is executed if there is one;
otherwise, no block in the construct is executed.

Figure 17 indicates the execution flow for an IF construct.

Is the logical
expression
in the IF-THEN
statement
true?

Is there
an(other)
 ELSE IF
statement?

No

Is there
an ELSE
statement?

No

No

Yes Is its
logical expression
true?

Yes

No

Execute
block

Execute
block

Execute
block

Yes

Yes

a10642

Figure 17. Execution flow for an IF construct

007–3692–004 303

Fortran Language Reference Manual, Volume 1

Example:

IF (I < J) THEN
X = Y + 5.0

ELSE IF (I > 100) THEN

X = 0.0

Y = -1.0

ELSE
X = -1.0

Y = 0.0

END IF

If I is less than J, the statement X = Y + 5.0 is executed and execution
proceeds following the END IF statement. If I. J and if I > 100, the two
statements following the ELSE IF statement are executed and execution
proceeds following the END IF statement. If neither of these conditions is true,
the block after the ELSE statement is executed.

8.3.2 IF Statement

The IF statement controls a single action statement, as opposed to a block of
statements.

8.3.2.1 Form of the IF Statement

The IF statement is defined as follows:

if_stmt is IF (scalar_logical_expr) action_stmt

Example:

IF (S < T) S = 0.0

8.3.2.2 Execution of the IF Statement

The scalar logical expression is evaluated. If true, the action statement is
executed. If false, the action statement is not executed, and control passes to the
next statement in the program.

The action statement must not be an IF statement or an END statement for a
program, function, or subroutine. Note that the action statement cannot be any

304 007–3692–004

Controlling Execution [8]

of the other END statements, such as END DO because they are not action
statements.

If the logical expression contains a function reference, its evaluation may have
side effects that modify the action statement.

A complete list of the action statements can be found in Section 2.5, page 23.
Action statements change the definition state of variables or the condition of the
I/O system, or are control statements. Specification statements such as type
declaration statements, FORMAT statements, and ENTRY statements are not
action statements. Note that constructs are not action statements.

8.4 CASE Construct

The CASE construct, like the IF construct, consists of a number of blocks, of
which at most one is selected for execution. The selection is based on the value
of the scalar expression in the SELECT CASE statement at the beginning of the
construct; the value of this expression is called the case index. The case selected
is the one for which the case index matches a case selector value in a CASE
statement. There is an optional default case that, in effect, matches all values
not matched by any other CASE statement in the construct.

8.4.1 Form of the CASE Construct

The general form of the CASE construct is as follows:

[case_construct_name :] SELECT CASE (case_expression)
[CASE (case_value_range_list) [case_construct_name]

block] ...
[CASE DEFAULT [case_construct_name]

block]
END SELECT [case_construct_name]

The case construct is defined as follows:

007–3692–004 305

Fortran Language Reference Manual, Volume 1

case_construct is select_case_stmt
[case_stmt

block] ...

end_select_stmt

select_case_stmt is [case_construct_name :] SELECT CASE (case_expr)

case_stmt is CASE case_selector [case_construct_name]

end_select_stmt is END SELECT [case_construct_name]

case_expr is scalar_int_expr

or scalar_char_expr

or scalar_logical_expr

case_selector is (case_value_range_list)

or DEFAULT

case_value_range is case_value

or case_value :

or : case_value

or case_value : case_value

case_value is scalar_int_initialization_expr

or scalar_char_initialization_expr

or scalar_logical_initialization_expr

The statement containing the keywords SELECT CASE is called the SELECT
CASE statement. The statement beginning with the keyword CASE is called the
CASE statement. The statement beginning with the keywords END SELECT is
called the END SELECT statement. A case value range list enclosed in
parenthesis or the DEFAULT keyword is called a case selector.

If a construct name is present on a SELECT CASE statement, it must also
appear on the END SELECT statement.

Any of the case selector statements may or may not have a construct name. If
one does, it must be the same name as the construct name on the SELECT
CASE statement.

A CASE statement with the case selector DEFAULT is optional. If it is present, it
is not required to be the last CASE statement.

The case_expr must be a scalar expression of type integer, character, or logical.

306 007–3692–004

Controlling Execution [8]

Within a particular CASE construct, the case expression and all case values must
be of the same type and must have the same kind type parameter values. If the
character type is used, different character lengths are allowed.

Each case_value must be a scalar initialization expression of the same type as the
case expression. An initialization expression is an expression that can be
evaluated at compile time; that is, essentially, a constant expression.

The colon forms of the case values expressing a range can be used for
expressions in the construct of type integer and character but not type logical.
For example, the following CASE statement would select all character strings
that collate between BOOK and DOG, inclusive:

CASE (’BOOK’:’DOG’)

After expression evaluation, there must be no more than one case selector that
matches the case index. In other words, overlapping case values and case
ranges are prohibited.

Branching to the END SELECT statement is allowed only from within the
construct. Branching to a CASE statement is prohibited; branching to the
SELECT CASE statement is allowed, however.

The following example shows the CASE construct:

! Compute the area with a formula appropriate for
! the shape of the object

FIND_AREA: &

SELECT CASE (OBJECT)

CASE (CIRCLE)

AREA = PI * RADIUS ** 2
CASE (SQUARE)

AREA = SIDE * SIDE

CASE (RECTANGLE)

AREA = LENGTH * WIDTH

CASE DEFAULT

PRINT*, "Unable to compute area."
END SELECT FIND_AREA

8.4.2 Execution of the CASE Construct

The case index (the scalar expression) in the SELECT CASE statement is
evaluated in anticipation of matching one of the case values preceding the
blocks. The case index must match at most one of the selector values. The block
following the case matched is executed, the CASE construct terminates, and

007–3692–004 307

Fortran Language Reference Manual, Volume 1

control passes to the next executable statement or construct following the END
SELECT statement of the construct. If no match occurs and the CASE DEFAULT
statement is present, the block after the CASE DEFAULT statement is selected. If
there is no CASE DEFAULT statement, the CASE construct terminates, and the
next executable statement or construct following the END SELECT statement of
the construct is executed. If the case value is a single value, a match occurs if
the index is equal to the case value (determined by the rules used in evaluating
the equality or equivalence operator). If the case value is a range of values, there
are three possibilities to determine a match depending on the form of the range:

Case value range Condition for a match

case_value1 : case_value2 case_value1 ≤ case_index ≤ case_value2

case_value : case_value ≤ case_index

: case_value case_value ≥ case_index

Figure 18, page 309, illustrates the execution of a CASE construct.

308 007–3692–004

Controlling Execution [8]

Evaluate the case expression
in the SELECT CASE statement

Execute
block

Yes

No

YesDoes the value
match a
case range?

a10643

Execute
block

Execute
block

Execute
block

Figure 18. Execution flow for a CASE construct

Example 1:

INDEX = 2

SELECT CASE (INDEX)

CASE (1)
X = 1.0

CASE (2)

X = 2.0

CASE DEFAULT

X = 99.0
END SELECT

The case expression INDEX has the value 2. The block following the case value
of 2 is executed; that is, the statement X = 2.0 is executed, and execution of
the CASE construct terminates.

Example 2:

007–3692–004 309

Fortran Language Reference Manual, Volume 1

COLOR = ’GREEN’

SELECT CASE (COLOR)
CASE (’RED’)

STOP

CASE (’YELLOW’)

CALL PROCEED_IF_YOU_CAN_SAFELY

CASE (’GREEN’)

CALL GO_AHEAD
END SELECT

This example uses selectors of type character. The expression COLOR has the
value GREEN, and therefore the procedure GO_AHEAD is executed. When it
returns, the execution of the CASE statement terminates, and the executable
statement after the END SELECT statement executes next.

8.5 DO Construct

The DO construct controls the number of times a sequence of statements and
constructs within the range of a loop is executed. There are three steps in the
execution of a DO construct:

1. If execution of the DO construct is controlled by a DO variable, the
expressions representing the parameters that determine the number of times
the range is to be executed are evaluated (step 1 of Figure 19).

2. A decision is made as to whether the range of the loop is to be executed
(step 2 of Figure 19).

3. If appropriate, the range of the loop is executed (step 3a of Figure 19); the
DO variable, if present, is updated (step 3b of Figure 19, page 311); and step
2 is repeated.

310 007–3692–004

Controlling Execution [8]

Should
DO range be
executed?

No

Execute
DO range

Yes

Initialize DO constructStep 1

Step 2

Update DO variable,
if present

Step 3b

Step 3a

a10644

Figure 19. Execution flow for a DO construct

DO loop execution can be controlled by a DO variable that is incremented a
certain number of times as prescribed in the initial DO statement, a DO WHILE
construct, or a simple DO.

There are two basic forms of the DO construct, the block DO and the nonblock DO.

Modern programming practice favors the block DO form, so the block DO form
is the recommended construct. The nonblock DO form is obsolescent. The block
DO contains all of the functionality of the nonblock DO and vice versa. Indeed,
both forms of DO construct permit the DO WHILE and DO forever forms of
loops. The feature distinguishing the two forms is that the block DO construct is
always terminated by an END DO or CONTINUE statement whereas the
nonblock DO construct either terminates with an action statement or shares a
termination statement with another nonblock DO construct.

The following example shows a block DO construct:

DO I = 1, N

SUM = SUM + A(I)

END DO

007–3692–004 311

Fortran Language Reference Manual, Volume 1

8.5.1 Form of the Block DO Construct

The block DO construct is a DO construct that terminates with an END DO
statement or a CONTINUE statement that is not shared with another DO
construct.

The block DO construct is defined as follows:

block_do_construct is do_stmt
do_block

end_do

do_stmt is label_do_stmt

or nonlabel_do_stmt

label_do_stmt is [do_construct_name :] DO label [loop_control]

nonlabel_do_stmt is [do_construct_name :] DO [loop_control]

loop_control is [,] do_variable = scalar_int_expr

scalar_int_expr [, scalar_int_expr]

or [,] WHILE (scalar_logical_expr)

do_variable is scalar_int_variable

do_block is block

end_do is end_do_stmt

or continue_stmt

end_do_stmt is END DO [do_construct_name]

The DO variable must be a scalar named variable of type integer. (This excludes
variables that are array elements, structures, and components of structures.)

Each scalar numeric expression in the loop control must be of type integer.

If the DO statement of a block DO construct has a construct name, the
corresponding end_do must be an END DO statement that has the same construct
name. If the DO statement of a block DO construct does not have a construct
name, the corresponding end_do must not have a construct name.

If the DO statement does not contain a label, the corresponding end_do must be
an END DO statement. If the DO statement does contain a label, the
corresponding end_do must be identified with the same label. By definition, a

312 007–3692–004

Controlling Execution [8]

block DO construct cannot share its terminal statement with another DO
construct, even if it is a labeled statement. If a DO construct does share its
terminal statement with another DO construct, it is a nonblock DO construct.
Refer to the following examples:

SUM = 0.0

DO I = 1, N

SUM = SUM + X(I) ** 2
END DO

FOUND = .FALSE.

I = 0

DO WHILE (.NOT. FOUND .AND. I < LIMIT)
IF (KEY == X(I)) THEN

FOUND = .TRUE.

ELSE

I = I + 1

END IF

END DO

NUM_ITERS = 0

DO

! F and F_PRIME are functions

X1 = X0 - F(X0) / F_PRIME(X0)
IF (ABS(X1-X0) < SPACING(X0) .OR. &

NUM_ITERS > MAX_ITERS) EXIT

X0 = X1

NUM_ITERS = NUM_ITERS + 1

END DO

INNER_PROD = 0.0

DO 10 I = 1, 10

INNER_PROD = INNER_PROD + X(I) * Y(I)

10 CONTINUE

LOOP: DO I = 1, N

Y(I) = A * X(I) + Y(I)

END DO LOOP

Although a DO construct can have both a label and a construct name, use of
both is not in the spirit of modern programming practice where the use of
labels is minimized.

007–3692–004 313

Fortran Language Reference Manual, Volume 1

8.5.2 Form of the Nonblock DO Construct

The nonblock DO construct is a DO construct that either shares a terminal
statement with another DO construct, or the terminal statement is an action
statement. The nonblock DO construct always uses a label to specify the
terminal statement of the construct.

Note: The Fortran standard has declared the nonblock DO construct to be
obsolescent.

The nonblock DO construct that ends with an action statement is defined as
follows:

nonblock_do_construct is action_term_do_construct

or outer_shared_do_construct

action_term_do_construct is label_do_stmt
do_body
do_term_action_stmt

do_body is [execution_part_construct] ...

do_term_action_stmt is action_stmt

The nonblock DO construct that shares a termination statement is defined as
follows:

nonblock_do_construct is action_term_do_construct

or outer_shared_do_construct

outer_shared_do_construct is label_do_stmt
do_body
shared_term_do_construct

shared_term_do_construct is outer_shared_do_construct

or inner_shared_do_construct

inner_shared_do_construct is label_do_stmt
do_body
do_term_shared_stmt

do_term_shared_stmt is action_stmt

314 007–3692–004

Controlling Execution [8]

The last statement in a nonblock DO construct (the statement in which the loop
label is defined), is called the DO termination or terminal statement of that
construct.

An action_term_do_construct is a nonblock DO construct that does not share its
DO termination with any other nonblock DO construct. An
outer_shared_do_construct is a nonblock DO construct that shares its DO
termination with at least one inner nonblock DO construct.

The DO termination of an action_term_do_construct must not be one of the
following:

• A GO TO statement

• A RETURN statement

• A STOP statement

• An EXIT statement

• A CYCLE statement

• An END statement for a program or subprogram

• An arithmetic IF statement

Note that a do_term_action_stmt is an action_stmt. A CONTINUE statement is an
action_stmt, but by definition, if a DO construct ends with a CONTINUE
statement, it is a block DO construct. Also note that a do_term_action_stmt cannot
be any kind of END statement; END statements other than program or
subprogram END statements are not specifically named in the preceding list
because they are not action_stmts.

The DO termination must be identified with a label and the corresponding DO
statement must refer to the same label.

The DO termination of an outer_shared_do_construct must not be a GO TO
statement, a RETURN statement, a STOP statement, an EXIT statement, a CYCLE
statement, an END statement for a program or subprogram, an arithmetic IF
statement, or an assigned GO TO statement. Note that DO termination cannot be
any other END statement because the other END statements are not action_stmts.

The DO termination must be identified with a label and all DO statements of the
shared termination DO construct must refer to the same label.

The following are examples of DO constructs that are nonblock DO constructs
because the DO terminations are action statements.

007–3692–004 315

Fortran Language Reference Manual, Volume 1

PROD = 1.0

DO 10 I = 1, N
10 PROD = PROD * P(I)

FOUND = .FALSE.

I = 0

DO 10 WHILE (.NOT. FOUND .AND. I < LIMIT)

I = I + 1
10 FOUND = KEY == X(I)

The following are examples of DO constructs that are nonblock DO constructs
because the DO terminations are shared.

DO 10 I = 1, N

DO 10 J = 1, N

10 HILBERT(I, J) = 1.0 / REAL(I + J)

DO 20 I = 1, N

DO 20 J = I+1, N
T = A(I, J); A(I, J) = A(J, I); A(J, I) = T

20 CONTINUE

8.5.3 Range of a DO Construct

The range of a DO construct consists of all statements and constructs following
the DO statement, bounded by and including the terminal statement. The DO
range can contain constructs, such as an IF construct, a CASE construct, or
another DO construct, but the inner construct or constructs must be entirely
enclosed within the nearest outer construct. If the range of a DO construct
contains another construct, the constructs are said to be nested.

A branch to a statement within the range of a DO construct is diagnosed by the
compiler as being unsafe.

ANSI/ISO: The Fortran standard prohibits a branch into the range of a DO
construct.

8.5.4 Active and Inactive DO Constructs

A DO construct is either active or inactive. A DO construct becomes active when
the DO statement is executed. A DO construct becomes inactive when any one of
the following situations occurs:

316 007–3692–004

Controlling Execution [8]

• The iteration count is zero at the time it is tested.

• The WHILE condition is false at the time it is tested.

• An EXIT statement is executed that causes an exit from the DO construct or
any DO construct containing the DO construct.

• A CYCLE statement is executed that causes cycling of any DO construct
containing the DO construct.

• There is a transfer of control out of the DO construct.

• A RETURN statement in the DO construct is executed.

• The program terminates for any reason.

8.5.5 Execution of DO Constructs

There are three forms of DO constructs, each with its own rules for execution: a
DO construct with an iteration count, a DO WHILE construct, and a simple DO
construct.

8.5.5.1 DO Construct with an Iteration Count

In this case, an iteration count controls the number of times the range of the
loop is executed.

The general form of a DO statement using an iteration count is as follows:

DO [label] [,] do_variable = start_expr, end_expr [, inc_expr]

The DO variable and the expressions may be of type integer. The following are
examples of the iterative DO statement:

DO 10 I = 1, N

DO, J = -N, N

DO K = N, 1, -1

8.5.5.1.1 The Iteration Count

An iteration count is established for controlling the number of times the
program executes the range of the DO construct. This is done by evaluating the
expressions start_expr, end_expr, and inc_expr, and converting these values to the
type of the DO variable. For example, let m1, m2, and m3 be the values obtained:

007–3692–004 317

Fortran Language Reference Manual, Volume 1

• m1 is the initial value of the DO variable

• m2 is the terminal value the DO variable may assume

• m3 is an optional parameter, specifying the DO variable increment

The value of m3 must not be zero. If expression3 is not present, m3 is given the
value 1. The iteration count is calculated from the following formula:

MAX (INT ((m2 - m1 + m3) / m3), 0)

Note that the iteration count is 0 if one of the following conditions is true:

• m1 > m2 and m3 > 0

• m1 < m2 and m3 < 0

8.5.5.1.2 Controlling Execution of the Range of the DO Construct

The steps that control the execution of the range of the DO construct are as
follows:

1. The DO variable is set to m1, the initial parameter (step 1 of Figure 19, page
311).

2. The iteration count is tested (step 2 of Figure 19, page 311). If it is 0, the DO
construct terminates.

3. If the iteration count is not 0, the range of the DO construct is executed (step
3a of Figure 19, page 311). The iteration count is decremented by 1, and the
DO variable is incremented by m3 (step 3b of Figure 19, page 311). Steps 2
and 3 are repeated until the iteration count is 0.

After termination, the DO variable retains its last value, the one that it had when
the iteration count was tested and found to be 0.

The DO variable must not be redefined or become undefined during the
execution of the range of the DO construct. Note that changing the variables
used in the expressions for the loop parameters during the execution of the DO
construct does not change the iteration count; it is fixed when execution of the
DO construct starts.

N = 10

SUM = 0.0

DO 2 I = 1, N

SUM = SUM + X(I)
N = N + 1

318 007–3692–004

Controlling Execution [8]

2 CONTINUE

The loop is executed 10 times; after execution I=11 and N=20.

X = 20.

DO I = 1, 2

DO J = 1, 5

X = X + 1.0
END DO

END DO

The inner loop is executed 10 times. After completion of the outer DO construct,
J=6, I=3, and X=30.

If the second DO statement had been the following, the inner DO construct
would not have executed at all; X would remain equal to 20; J would equal 5,
its initial value; and I would be equal to 3:

DO J = 5, 1

8.5.5.2 DO WHILE Construct

The DO WHILE form of the DO construct provides the ability to repeat the DO
range while a specified condition remains true.

The general form of the DO WHILE statement is as follows:

DO [label] [,] WHILE (expression)

The following examples show the DO WHILE statement:

DO WHILE(K >= 4)

DO 20 WHILE(.NOT. FOUND)

The DO range is executed repeatedly. Prior to each execution of the DO range,
the logical expression is evaluated. If it is true, the range is executed; if it is
false, the DO WHILE construct terminates.

SUM = 0.0

I = 0

DO WHILE (I < 5)

I = I + 1
SUM = SUM + I

END DO

007–3692–004 319

Fortran Language Reference Manual, Volume 1

The loop would execute five times, after which SUM = 15.0 and I = 5.

8.5.5.3 Simple DO Construct

A DO construct without any loop control provides the ability to repeat
statements in the DO range until the DO construct is terminated explicitly by
some statement within the range. When the end of the DO range is reached, the
first executable statement of the DO range is executed next.

The form of the simple DO statement is as follows:

DO [label]

Example:

DO

READ *, DATA
IF (DATA < 0) STOP

CALL PROCESS (DATA)

END DO

The DO range executes repeatedly until a negative value of DATA is read, at
which time the DO construct (and the program, in this case) terminates. The
previous example, rewritten using a label, appears as follows:

DO 100

READ *, DATA

IF (DATA <0) STOP
CALL PROCESS(DATA)

100 CONTINUE

8.5.6 Altering the Execution Sequence Within the Range of a DO Construct

There are two statements that can appear only in the range of a DO construct that
alter the execution sequence of the DO construct. One is the EXIT statement; the
other is the CYCLE statement. Other statements, such as branch statements, the
RETURN statement, and the STOP statement, also alter the execution sequence
but are not restricted to DO constructs as are the EXIT and CYCLE statements.

320 007–3692–004

Controlling Execution [8]

8.5.6.1 EXIT Statement

The EXIT statement immediately causes termination of the DO construct. No
further action statements within the range of the DO construct are executed. It
can appear in either the block or nonblock form of the DO construct, except that
it must not be the DO termination of the nonblock form.

The EXIT statement is defined as follows:

exit_stmt is EXIT [do_construct_name]

If the EXIT statement has a construct name, it must be within the DO construct
with the same name; when it is executed, the named DO construct is terminated
as well as any DO constructs containing the EXIT statement and contained
within the named DO construct.

If the EXIT statement does not have a construct name, the innermost DO
construct in which the EXIT statement appears is terminated.

Example 1: In the following example, the DO construct has a construct name,
LOOP_8; the DO range is executed repeatedly until the condition in the IF
statement is met, when the DO construct terminates:

LOOP_8 : DO

...
IF (TEMP == INDEX) EXIT LOOP_8

...

END DO LOOP_8

Example 2: In the following example, when the EXIT statement in the IF
statement is executed, both the inner loop and the outer loop are terminated:

OUTER_LOOP: DO I = 1, 10

INNER_LOOP: DO J = 1, 10

...

IF (TEMP == INDEX) EXIT OUTER_LOOP
...

END DO INNER_LOOP

...

END DO OUTER_LOOP

007–3692–004 321

Fortran Language Reference Manual, Volume 1

8.5.6.1.1 CYCLE Statement

In contrast to the EXIT statement, which terminates execution of the DO
construct entirely, the CYCLE statement interrupts the execution of the DO range
and begins a new cycle of the DO construct, with appropriate adjustments made
to the iteration count and DO variable, if present. It can appear in either the
block or nonblock form of the DO construct, except it must not be the DO
termination of the nonblock form. When the CYCLE statement is executed in
the nonblock form, the DO termination is not executed.

The CYCLE statement is defined as follows:

cycle_stmt is CYCLE [do_construct_name]

If the CYCLE statement has a construct name, it must be within the DO construct
with the same name; when it is executed, the execution of the named DO
construct is interrupted, and any DO construct containing the CYCLE statement
and contained within the named DO construct is terminated.

If the CYCLE statement does not have a construct name, the innermost DO
construct in which the CYCLE statement appears is interrupted.

The CYCLE statement can be used with any form of the DO statement and
causes the next iteration of the DO range to begin, if permitted by the condition
controlling the loop.

Upon interruption of the DO construct, if there is a DO variable, it is updated
and the iteration count is decremented by 1. Then, in all cases, the processing
of the next iteration begins.

In the following example, the loop is executed as long as INDEX is nonnegative.
If INDEX is negative, the loop is terminated. If INDEX is 0, the latter part of the
loop is skipped.

DO
. . .

INDEX = . . .

. . .

IF (INDEX < 0) EXIT

IF (INDEX == 0) CYCLE
. . .

END DO

322 007–3692–004

Controlling Execution [8]

8.6 Branching

Branching is a transfer of control from the current statement to another
statement or construct in the program unit. A branch alters the execution
sequence. This means that the statement or construct immediately following the
branch is usually not executed. Instead, some other statement or construct is
executed, and the execution sequence proceeds from that point. The terms
branch statement and branch target statement are used to distinguish between the
transfer statement and the statement to which the transfer is made.

An example of branching is provided by the GO TO statement. It is used to
transfer control to a statement in the execution sequence that is usually not the
next statement in the program, although this is not prohibited.

The statements that can be branch target statements are those classified as action
statements plus the IF-THEN statement, SELECT CASE statement, DO statement,
WHERE statement, and a few additional statements in limited situations.

The additional statements that can be branch targets in limited contexts are as
follows:

• An END SELECT statement, provided the branch is taken from within the
CASE construct.

• A DO termination, provided the branch is taken from within the DO construct.

• An END IF statement, provided that the branch is taken from within the IF
construct.

The standard does not permit a branch to a statement within a block from
outside the block. The CF90 and MIPSpro 7 Fortran 90 compilers, however,
permit these branches; such branches are diagnosed as being unsafe.

ANSI/ISO: The Fortran standard does not permit branches into executable
blocks.

8.6.1 Use of Labels in Branching

A statement label is a means of identifying the branch target statement. Any
statement in a Fortran program can have a label. However, if a branch statement
refers to a statement label, some statement in the program unit must have that
label, and the statement label must be on an allowed branch target statement.

As described in Section 3.2.5, page 53, a label is a string of from one to five
decimal digits; leading zeros are not significant. Note that labels can be used in
both free and fixed source forms.

007–3692–004 323

Fortran Language Reference Manual, Volume 1

8.6.2 GO TO Statement

The GO TO statement is an unconditional branching statement that alters the
execution sequence.

8.6.2.1 Form of the GO TO Statement

The GO TO statement is defined as follows:

goto_stmt is GO TO label

The label must be a branch target statement in the same scoping unit as the GO
TO statement (that is, in the same program unit, excluding labels on statements
in internal procedures, derived-type definitions, and interface blocks).

8.6.2.2 Execution of the GO TO Statement

When the GO TO statement is executed, the next statement that is executed is
the branch target statement identified with the label specified. Execution
proceeds from that point.

GO TO 200 ! This is an unconditional branch and

! always goes to 200.

!
X = 1.0 ! Because this statement follows a GO

! TO statement and is unlabeled, it is

! not reachable.

GO TO 10

GO TO 010 ! 10 and 010 are the same label.

8.6.3 Computed GO TO Statement

The computed GO TO statement transfers to one of a set of branch target
statements based on the value of an integer expression, selecting the branch
target from a list of labels. The CASE construct provides a similar functionality
in a more structured form.

Note: The Fortran standard has declared the computed GO TO statement to
be obsolescent.

The computed GO TO statement is defined as follows:

324 007–3692–004

Controlling Execution [8]

computed_goto_stmt is GO TO (label_list) [,] scalar_int_expr

If there are n labels in the list and the expression has one of the values from 1
to n, the value identifies a statement label in the list: the first, second, ... , or nth
label. A branch to the statement with that label is executed.

If the value of the expression is less than 1 or greater than n, no branching
occurs and execution continues with the next executable statement or construct
following the computed GO TO statement.

Each label in the list must be the label of a branch target statement in the same
scoping unit as the computed GO TO statement.

A label can appear more than once in the list of target labels.

GO TO (10, 20), SWITCH
GO TO (100, 200, 3, 33), 2*I-J

In the following example, if SWITCH has the value 1 or 3, the assignment
statement labeled 10 is executed; if it has the value 2, the assignment statement
labeled 11 is executed. If it has a value less than 1 or greater than 3, the
assignment statement Y = Z is executed, because it is the next statement after
the computed GO TO statement, and the statement with label 10 is executed
next.

SWITCH = . . .

GO TO (10, 11, 10) SWITCH
Y = Z

10 X = Y + 2.

. . .

11 X = Y

8.6.4 CONTINUE Statement

The CONTINUE statement is defined as follows:

continue_stmt is CONTINUE

Typically, the statement has a label and is used for DO termination; however, it
can serve as some other place holder in the program or as a branch target
statement. It can appear without a label. The statement by itself does nothing
and has no effect on the execution sequence or on program results. The
following are examples of CONTINUE statements:

007–3692–004 325

Fortran Language Reference Manual, Volume 1

100 CONTINUE

CONTINUE

8.6.5 STOP Statement

The STOP statement terminates the program whenever and wherever it is
executed. The STOP statement is defined as follows:

stop_stmt is STOP [stop_code]

stop_code is scalar_char_constant

EXT or digit ...

The character constant or list of digits identifying the STOP statement is
optional and is called a stop code.

When the stop_code is a string of digits, leading zeros are not significant; 10 and
010 are the same stop_code. You can specify from 1 to 80 digits.

The stop code is accessible following program termination. The CF90 and
MIPSpro 7 Fortran 90 compilers send it to the standard error file (stderr). The
following are examples of STOP statements:

STOP
STOP ’Error #823’

STOP 20

ANSI/ISO: The Fortran standard specifies from 1 to 5 digits in the stop_code.

8.7 Arithmetic IF Statement (Obsolescent)

The arithmetic IF statement is a three-way branching statement based on an
arithmetic expression.

The arithmetic IF statement is defined as follows:

R840 arithmetic_if_stmt is IF (scalar_numeric_expr) label, label, label

The same label can appear more than once in an arithmetic IF statement.

326 007–3692–004

Controlling Execution [8]

The numeric expression must not be of type complex.

Each statement label must be the label of a branch target statement in the same
scoping unit as the arithmetic IF statement itself.

The execution begins with the evaluation of the expression. If the expression is
negative, the branch is to the first label; if zero, to the second label; and if
positive, to the third label.

The following example shows an arithmetic IF statement:

READ *, DATA

IF(DATA) 10, 20, 30

10 PRINT *, ’NEGATIVE VALUE’
...

20 PRINT *, ’ZERO VALUE’

...

30 PRINT *, ’POSTIVE VALUE’

...

007–3692–004 327

Glossary

argument keyword

The name of a dummy (or formal) argument. This name is used in the
subprogram definition; it also may be used when the subprogram is invoked to
associate an actual argument with a dummy argument. Using argument
keywords allows the actual arguments to appear in any order. The Fortran 90
standard specifies argument keywords for all intrinsic procedures. Argument
keywords for user-supplied external procedures may be specified in a
procedure interface block.

array

(1) A data structure that contains a series of related data items arranged in rows
and columns for convenient access. The C shell and the awk(1) command can
store and process arrays. (2) In Fortran 90, an object with the DIMENSION
attribute. It is a set of scalar data, all of the same type and type parameters.
The rank of an array is at least 1, and at most 7. Arrays may be used as
expression operands, procedure arguments, and function results, and they may
appear in input/output (I/O) lists.

association

An association permits an entity to be referenced by different names in a scoping
unit or by the same or different names in different scoping units. Several kinds
of association exist. The principal kinds of association are pointer association,
argument association, host association, use association, and storage association.

automatic variable

A variable that is not a dummy argument but whose declaration depends on a
nonconstant expression (array bounds and/or character length).

Autotasking

A trademarked process of Cray Research that automatically divides a program
into individual tasks and organizes them to make the most efficient use of the
computer hardware.

007–3692–004 329

Fortran Language Reference Manual, Volume 1

bottom loading

An optimization technique used on some scalar loops in which operands are
prefetched during each loop iteration for use in the next iteration. The operand
is available as soon as the first loop instruction executes. A prefetch is
performed even during the final loop iteration, before the loop’s final jump test
has been performed.

cache

In a processing unit, a high-speed buffer storage that is continually updated to
contain recently accessed contents of main storage. Its purpose is to reduce
access time. In disk subsystems, a method the channel buffers use to buffer disk
data during transfer between the devices and memory.

cache line

On Cray MPP systems, a cache line consists of four quad words, which is the
maximum size of a hardware message.

CIV

A constant increment variable is a variable that is incremented only by a loop
invariant value (for example, in a loop with index J, the statement J = J + K, in
which K can be equal to 0, J is a CIV).

constant

A data object whose value cannot be changed. A named entity with the
PARAMETER attribute is called a named constant. A constant without a name is
called a literal constant.

construct

A sequence of statements that starts with a SELECT CASE, DO, IF, or WHERE
statement and ends with the corresponding terminal statement.

control construct

An action statement that can change the normal execution sequence (such as a
GO TO, STOP, or RETURN statement) or a CASE, DO, or IF construct.

330 007–3692–004

Glossary

critical region

On Cray MPP systems, a synchronization mechanism that enforces serial access
to a piece of code. Only one PE may execute in a critical region at a time.

data entity

A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (also called the function result). A data entity
always has a type.

data object

A constant, a variable, or a part of a constant or variable.

declaration

A nonexecutable statement that specifies the attributes of a data object (for
example, it may be used to specify the type of a variable or function result or
the shape of an array).

definition

This term is used in two ways. (1) A data object is said to be defined when it
has a valid or predictable value; otherwise, it is undefined. It may be given a
valid value by execution of statements such as assignment or input. Under
certain circumstances, it may subsequently become undefined. (2) Procedures
and derived types are said to be defined when their descriptions have been
supplied by the programmer and are available in a program unit.

derived type

A type that is not intrinsic (a user-defined type); it requires a type definition to
name the type and specify its components. The components may be of intrinsic
or user-defined types. An object of derived type is called a structure. For each
derived type, a structure constructor is available to specify values. Operations
on objects of derived type must be defined by a function with an interface and
the generic specifier OPERATOR. Assignment for derived type objects is defined
intrinsically, but it may be redefined by a subroutine with the ASSIGNMENT
generic specifier. Data objects of derived type may be used as procedure
arguments and function results, and they may appear in input/output (I/O)
lists.

007–3692–004 331

Fortran Language Reference Manual, Volume 1

designator

Sometimes it is convenient to reference only part of an object, such as an
element or section of an array, a substring of a character string, or a component
of a structure. This requires the use of the name of the object followed by a
selector that selects a part of the object. A name followed by a selector is called
a designator.

entity

(1) In Open Systems Interconnection (OSI) terminology, a layered protocol
machine. An entity in a layer performs the functions of the layer in one
computer system, accessing the layer entity below and providing services to the
layer entity above at local service access points. (2) In Fortran 90, a general
term used to refer to any Fortran 90 concept (for example, a program unit, a
common block, a variable, an expression value, a constant, a statement label, a
construct, an operator, an interface block, a derived type, an input/output (I/O)
unit, a name list group, and so on).

executable construct

A statement (such as a GO TO statement) or a construct (such as a DO or CASE
construct).

expression

A set of operands, which may be function invocations, and operators that
produce a value.

extent

A structure that defines a starting block and number of blocks for an element of
file data.

function

Usually a type of operating-system-related function written outside a program
and called in to do a specific function. Smaller and more limited in capability
than a utility. In a programming language, a function is usually defined as a
closed subroutine that performs some defined task and returns with an answer,
or identifiable return value.

The word "function" has a more specific meaning in Fortran than it has in C. In
C, it is refers to any called code; in Fortran, it refers to a subprogram that
returns a value.

332 007–3692–004

Glossary

generic specifier

An optional component of the INTERFACE statement. It can take the form of an
identifier, an OPERATOR (defined_operator) clause, or an ASSIGNMENT (=)
clause.

heap

A section of memory within the user job area that provides a capability for
dynamic allocation. See the HEAP directive in SR-0066.

inlining

The process of replacing a user subroutine or function call with the definition
itself. This saves subprogram call overhead and may allow better optimization
of the inlined code. If all calls within a loop are inlined, the loop becomes a
candidate for vectorization and/or tasking.

intrinsic

Anything that the language defines is intrinsic. There are intrinsic data types,
procedures, and operators. You may use these freely in any scoping unit.
Fortran programmers may define types, procedures, and operators; these
entities are not intrinsic.

local

(1) A type of scope in which variables are accessible only to a particular part of
a program (usually one module). (2) The system initiating the request for
service. This term is relative to the perspective of the user.

multitasking

(1) The parallel execution of two or more parts of a program on different CPUs;
these parts share an area of memory. (2) A method in multiuser systems that
incorporates multiple interconnected CPUs; these CPUs run their programs
simultaneously (in parallel) and shares resources such as memory, storage
devices, and printers. This term can often be used interchangeably with
parallel processing.

name

A term that identifies many different entities of a program such as a program
unit, a variable, a common block, a construct, a formal argument of a

007–3692–004 333

Fortran Language Reference Manual, Volume 1

subprogram (dummy argument), or a user-defined type (derived type). A name
may be associated with a specific constant (named constant).

operator

(1) A symbolic expression that indicates the action to be performed in an
expression; operator types include arithmetic, relational, and logical. (2) In
Fortran 90, an operator indicates a computation that involves one or two
operands. Fortran 90 defines several intrinsic operators (for example, +, -, *, /, **
are numeric operators, and .NOT., .AND., and .OR. are logical operators). Users
also may define operators for use with operands of intrinsic or derived types.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not necessarily, leads to referencing
a storage location outside of the entire array.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

pointer

(1) A data item that consists of the address of a desired item. (2) A symbol that
moves around a computer screen under the control of the user.

procedure

(1) A named sequence of control statements and/or data that is saved in a
library for processing at a later time, when a calling statement activates it; it
provides the capability to replace values within the procedure. (2) In Fortran 90,
procedure is defined by a sequence of statements that expresses a computation
that may be invoked as a subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure, an internal procedure, a
module procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than one procedure.

procedure interface

In Fortran 90, a sequence of statements that specifies the name and
characteristics of one or more procedures, the name and attributes of each

334 007–3692–004

Glossary

dummy argument, and the generic specifier by which it may be referenced if
any. See generic specifier.

In FORTRAN 77 and Fortran 90, a generic function is one whose output
value data type is determined by the data type of its input arguments. In
FORTRAN 77, the only generic functions allowed are those that the standard
defines. In Fortran 90, programmers may construct their own generic function
by creating "generic interface," which is like a regular procedure interface,
except that it has a "generic specifier" (the name of the generic function) after
the keyword INTERFACE.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

reference

A data object reference is the appearance of a name, designator, or associated
pointer in an executable statement that requires the value of the object. A
procedure reference is the appearance of the procedure name, operator symbol,
or assignment symbol in an executable program that requires execution of the
procedure. A module reference is the appearance of the module name in a USE
statement.

scalar

(1) In Fortran 90, a single object of any intrinsic or derived type. A structure is
scalar even if it has a component that is an array. The rank of a scalar is 0. (2)
A nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to
a floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scope

The region of a program in which a variable is defined and can be referenced.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure

007–3692–004 335

Fortran Language Reference Manual, Volume 1

interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is
referred to as the host scoping unit of the inner scoping unit.

search loop

A loop that can be exited by means of an IF statement.

sequence

A set ordered by a one-to-one correspondence with the numbers 1, 2, through
n. The number of elements in the sequence is n. A sequence may be empty, in
which case, it contains no elements.

shared

Accessible by multiple parts of a program. Shared is a type of scope.

shell variable

A name representing a string value. Variables that are usually set only on a
command line are called parameters (positional parameters and keyword
parameters). Other variables are simply names to which a user (user-defined
variables) or the shell itself may assign string values. The shell has predefined
shell variables (for example, HOME). Variables are referenced by prefixing the
variable name by a $ (for example, $HOME).

software pipelining

Software pipelining is a compiler code generation technique in which
operations from various loop iterations are overlapped in order to exploit
instruction-level parallelism, increase instruction issue rate, and better hide
memory and instruction latency. As an optimization technique, software
pipelining is similar to bottom loading, but it includes additional, and more
efficient, scheduling optimizations.

Cray compilers perform safe bottom loading by default. Under these
conditions, code generated for a loop contains operations and stores associated
with the present loop iteration and contains loads associated with the next loop
iteration. Loads for the first iteration are generated in the loop preamble.

When software pipelining is performed, code generated for the loop contains
loads, operations, and stores associated with various iterations of the loop.
Loads and operations for first iterations are generated in the preamble to the

336 007–3692–004

Glossary

loop. Operations and stores for last iterations of loop are generated in the
postamble to the loop.

statement keyword

A keyword that is part of the syntax of a statement. Each statement, other than
an assignment statement and a statement function definition, begins with a
statement keyword. Examples of these keywords are IF, READ, and INTEGER.
Statement keywords are not reserved words; you may use them as names to
identify program elements.

stripmining

A single-processor optimization technique in which arrays, and the program
loops that reference them, are split into optimally-sized blocks, termed strips.
The original loop is transformed into two nested loops. The inner loop
references all data elements within a single strip, and the outer loop selects the
strip to be addressed in the inner loop. This technique is often performed by
the compiler to maximize the usage of cache memory or as part of vector code
generation.

structure

A language construct that declares a collection of one or more variables
grouped together under one name for convenient handling. In C and C++, a
structure is defined with the struct keyword. In Fortran 90, a derived type is
defined first and various structures of that type are subsequently declared.

subobject

Parts of a data object may be referenced and defined separately from other
parts of the object. Portions of arrays are array elements and array sections.
Portions of character strings are substrings. Portions of structures are structure
components. Subobjects are referenced by designators and are considered to be
data objects themselves.

subroutine

A series of instructions that accomplishes a specific task for many other routines.
(A subsection of a user-written program of varying size and, therefore, function.
It is written within the program. It is not a subsection of a routine.) It differs
from a main routine in that one of its parameters must specify the location to
which to return in the main program after the function has been accomplished.

007–3692–004 337

Fortran Language Reference Manual, Volume 1

TKR

An acronym that represents attributes for argument association. It represents
the data type, kind type parameter, and rank of the argument.

type parameter

Two type parameters exist for intrinsic types: kind and length. The kind type
parameter KIND indicates the decimal range for the integer type, the decimal
precision and exponent range for the real and complex types, and the machine
representation method for the character and logical types. The length type
parameter LEN indicates the length of a character string.

variable

(1) A name that represents a string value. Variables that usually are set only on
a command line are called parameters. Other variables are simply names to
which the user or the shell may assign string values. (2) In Fortran 90, data
object whose value can be defined and redefined. A variable may be a scalar or
an array. (3) In the shell command language, a named parameter. See also
shell variable.

338 007–3692–004

Index

A

Accessibility
default, 157
of an object, 155

Action
statement

BNF summary, 34
definition, 299

Actual arguments, 227
Allocatable arrays, overview, 204
ALLOCATABLE attribute and statement, 141
ALLOCATE statement, 206
Allocation, 21
Ampersands, 56, 57
Argument

association, 10
intent, 159

Arithmetic operators, 221
Array

allocatable, 137, 204, 208
ALLOCATABLE attribute, 141
assignment, 288
assumed-shape, 136
assumed-size, 138, 227
automatic, 171
bound, 196
conformable, definition of, 17
constructor, 112, 246
deallocation, 204
deferred shape, 137, 142, 248
DIMENSION attribute, 139
element, 196, 197
element order, 203
explicit-shape, 135
lower bound, 196
many-one section, 201
masked assignment, 218
name, 196

overview, 195
parent, 197
portion, 18
properties, 134
rank, 17, 194, 195
section, 192, 197, 202
shape, 195
size, 195
specifications, 134
stride, 200
structure, 192
subscript, 200
upper bound, 196
zero-size, 207

array constructor in structure constructor, 115
array declaration, 196
array section, 202
array shape, 196
array size, 196
ASCII character set, 57
Assignment

array (masked), 288
defined, 218, 283
expressions, 217
intrinsic, 154
masked array, 218
overview, 279
pointer, 21, 212, 218
type conversion, 281

ASSIGNMENT statement, 279
Association

argument, 10
host, 12
overview, 7, 10, 13
partial, 176
storage, 10, 174, 185
total, 176
use, 12

007–3692–004 339

Fortran Language Reference Manual, Volume 1

variable, 10
Assumed-shape array, 136
Assumed-size array, 138
Attribute

specifications, BNF summary, 33
Attribute-oriented declarations, 117
Automatic

array, 171
character length, 171
data object, definition, 127
data objects, 171
objects, 171

AUTOMATIC attribute and statement, 145

B

Binary operators, 221
Bitwise operators, 221
Blank

characters
as separators in free source form, 58
in fixed source form, 61
in keywords in free source form, 58
significance in free source form, 55

common, 179
padding, 153

Block, 300
Block data

BNF summary, 28
program unit, 14

Boolean data type
hexadecimal form, 92
Hollerith form, 93
introduction, 90
octal form, 91

Bound
expression, 207

BOZ constants, 44
Branch statement, 20
Branching

overview, 323

C

CASE
construct

BNF summary, 36
overview, 305
relationship with blocks, 300

statement, 305
Case sensitivity, 44
Character

data type, 88
length, automatic, 171
operators, 221
set, 43
string, 190

CHARACTER statement, 126
CLOC intrinsic procedure, 131
Comment line

in fixed source form, 61
in free source form, 55

Common
blocks

continuation, 180
overview, 179
saving, 165

COMMON statement, 179
Comparison expression, 232
comparison expression, 233
Compatibility with FORTRAN 77, 1
Compiler directives, 55, 63
Complex

data type, 84
COMPLEX * statement, 124
complex declaration, 84
COMPLEX statement, 124
Computed GO TO statement, 324
Concatenation expression, 231
concatenation expression, 231
Conformable arrays

definition, 17
Conformance to standards, 4
Conjunct expression, 234

340 007–3692–004

Index

conjunct expression, 234
Constant

expressions, 256
Constants

BOZ, 44
forms, 73
literal, 44, 50
named, 50
overview, 48, 188

Construct
control, 300
DO WHILE, 319
executable, 300
IF, 302

Constructors
array, 112
form for, 73

Continuation
ampersand, 56, 57
lines

in fixed source form, 61
in free source form, 56

CONTINUE statement, 325
Control

characters, 43
Cray character pointer data type, 97, 131
Cray pointer data type, 93
Cray POINTER statement, 130
CYCLE statement, 322

D

Data
dynamic, 18
environment, 16
global, 179
object

accessibility, 155
attributes, 118
automatic, 118, 127, 171
dynamic, overview, 18

sharing, 174

type
additions (extensions) to standard, 67
Boolean, 90
character, 88
complex, 84
Cray character pointer, 97
Cray pointer, 93
derived, 67, 97
integer, 75
logical, 86
overview, 16, 67, 74
primary, 246
real, 80

DATA statement, 146
data-implied-do expression, 267
DEALLOCATE statement, 209
Deallocation

as dynamic behavior, 21
pointer, 204, 212

Declaration statements, 117, 119
Default initialization, 99
Deferred-shape array, 137
deferred-shape array, 137
Defined

assignment, 283
variables, 20

Defined unary expression, 228
Definition status, 275
Delimiter

in a statement, 46
use of special characters, 45

delimiters, 46
Derived type

declaration statement, 129
definition, 99
definition, BNF summary, 29
operations, 108
specifying constant expressions, 109
values, 108

derived-type definition, 103, 104
Digits, 44
DIMENSION attribute and statement, 139

007–3692–004 341

Fortran Language Reference Manual, Volume 1

Dimensionality
overview, 17

DO
construct

BNF summary, 37
execution, 317
overview, 310
relationship with blocks, 300

nonblock DO construct, 314
DO WHILE construct, 316
DO WHILE statement, 319
DOUBLE PRECISION * 16 statement, 123
DOUBLE PRECISION statement, 123
Dummy

procedures, 168
Dynamic data, 18, 204

E

END DO statement, 312
END SELECT statement, 305
END statement, 61
Entity-oriented declarations, 117
Equivalence

array, 178
character length, 178
expression, 236

equivalence expression, 237
EQUIVALENCE statement

restrictions, 184
syntax, 177

Evaluation of expressions, 274
Exclamation mark, 55
Exclusive disjunct expression, 236
Executable

program, 13
statement

definition, 299
Execution

CASE construct, 307
controlling

overview, 299

part of a program, BNF summary, 33
sequence

altering, 320, 323
controlling, 299
overview, 20

EXIT statement, 321
Explicit-shape array, 135
Exponentiation expression, 229
Expression

alternative evaluation, 219
constant, 256
data type, 245
equivalent, 219
evaluation, 218, 274
extents, 252
formation, 220, 267
general form, 237
initialization, 255
interpretation, 267
logical array, 289
overview, 215
restricted, 260
shape, 252, 245
special, 255
specification, 260
type parameters, 245

expression, 238
Extension operation

definition, 245
External

function
interface block, 168

names used by the compiler, 46
procedure, 168
subprogram

BNF summary, 27
unit, 13

EXTERNAL attribute and statement, 168

342 007–3692–004

Index

F

f90(1) command, 64
FCD function, 131
FILE=

specifier
uppercase/lowercase, 44

FIXED compiler directive, 63
Fixed source form

overview, 60
restrictions, 63
sample program, 62

FORALL
construct

BNF summary, 37
FORALL construct, 293
FORALL statement, 297
Fortran

history of the language, 1
Fortran 90, scope of the standard, 2
FREE compiler directive, 63
Free source form

overview, 55
restrictions, 63
sample program, 60

Function
appearance in a program, 14
interface, 247
nonelemental, 292
side effect, 275

G

GO TO
statement, 324
statement (computed), 324

H

Host association, 12

I

IF
construct

BNF summary, 37
construct and statement, 300, 301
statement (arithmetic), 326

IF statement, 304
Implicit

typing, 118, 132
IMPLICIT NONE statement, 132
IMPLICIT statement, 132
INCLUDE

file, 64
line, 64

Inclusive disjunct expression, 235
Initialization

data, 146
expressions, 255, 258
SAVE attribute, 148

Integer
data type, 75

INTEGER * statement, 121
INTEGER statement, 121
Interface

block
BNF summary, 29

Internal
procedures, 14, 16
subprogram, BNF summary, 28

Interpretation
equivalent, 276
intrinsic operation, 269
of defined operations, 272

Intrinsic
assignment, 280
operations

interpretation, 268
overview, 242

INTRINSIC attribute and statement, 170
Intrinsic data types, 74
Intrinsic operators, 51

007–3692–004 343

Fortran Language Reference Manual, Volume 1

Iteration count, 317

K

Keyword
statement, 47

Kind
overview, 17
parameter

definition, 70, 72
operation result, 248

values
character type, 89
complex type, 84
integer type, 75
logical type, 86
real type, 80

L

Label
of a statement, 53
use in branching, 323

Language elements and source form
CF90 character set, 43
INCLUDE line, 64
lexical tokens

constants, 48
names, 47
operators, 50
overview, 46
statement keywords, 47
statement labels, 53

low-level syntax, 65
overview, 43
portable source form, 63
source form

fixed source form, 60
free source form, 55
overview, 53

Lexical token

separator, 55
Linked list, 208
Literal constant

BOZ, 44
definition, 50

Logical
data type, 86
operators, 221

LOGICAL * statement, 125
LOGICAL statement, 125
Low-level syntax, 65

M

Main program
BNF summary, 27
unit, 13

Many-one array section, 201
Masked array assignment, 288
Module

as a program unit, 13
BNF summary, 27
COMMON and EQUIVALENCE statements,

used in, 185
role in packaging, 16
subprograms, appearance in a program, 14
use of in Fortran, 12

Multiplication expression, 229
multiplication expression, 230

N

NAME=
specifier

uppercase/lowercase, 44
Named constant, 50
Namelist

accessibility, 173
data object, 173
group, 173

344 007–3692–004

Index

NAMELIST statement, 173, 174
Naming rules, 47
Nonblock DO construct, 314
Nonexecutable statement

definition, 299
Nonstandard syntax, 4
Not expression, 233
NULLIFY statement, 209

O

Operands
definition, 220
pointer, 272

Operation
defined, 223

interpretation of, 272
interpretation of, 268
numeric intrinsic, 243
resultant type, 248
type parameters, 248
user-defined, 223

Operators
binary, 221
character type, intrinsic, 89
complex type, intrinsic, 85
defined, 244
extended intrinsic, 224
integer type, intrinsic, 77
intrinsic, 216, 223
logical type, intrinsic, 87
overview, 50
precedence of, 216, 240
real type, intrinsic, 82
relational, 223
unary, 221
user-defined, 52, 215

OPTIONAL attribute and statement, 161
Order

statement, 53
Organization

program, 13

P

Packaging, 15
PARAMETER attribute and statement, 154
Pointer

allocating, 208
assignment, 21, 285
association, 21
association status, 21, 204
disassociation, 21
linked list, 208
nullification, 21
objects, 18
overview, 204
properties, 142
TARGET attribute, 22
target definition, 21
undefined, 212

pointer assignment, 287
POINTER attribute and statement, 143
Portability, 5
Precedence

of operators, 240
operator, 224

PRIVATE attribute and statement, 155
Procedure

appearance in a program, 14
as argument, 168
endings, BNF summary, 28
headings, BNF summary, 28
internal, definition, 14
invocation, 19
properties, 168

Processor conformance to standards, 4
Program

conformance to standards, 4
executable, 13
execution, overview, 19
ordering of program units, 38
organization, 13
units

block data, 14

007–3692–004 345

Fortran Language Reference Manual, Volume 1

external subprogram (subroutine or
function), 13

main program, 13
module, 13
overview, 13

PUBLIC attribute and statement, 155

R

Range of a DO construct, 316
Real

data type, 80
REAL * statement, 122
REAL statement, 122
Recursion

capabilities, 21
SAVE attribute, 163

Relational operators, 221
RESHAPE function, 114
Restricted expression, 260
Result type, numeric intrinsic operation, 250

S

SAVE attribute and statement, 163
Scope

overview, 7
relationship with association, 13

Scoping unit, 13
SELECT CASE statement, 305
Sequence

storage, 176
Source form, 53
Special characters, 43
Specification

constructs, summary, 29
expressions, 260
statements, BNF summary, 30

specification expression, 262
Statement

branch, 20

keywords, 47
labels, in fixed source form, 61
order, 53
separator, 56

statement keyword, 47
STOP statement, 326
Storage

association, 10, 174
order

structure, 174
sequence, 176
units, 174
working, 171

String, 190
Structure

component, 192
constructor

definition, 99
overview, 109
use in derived type declarations, 129

definition, 16, 71
nonsequence, 175
sequence, 175

structure component, 103
structure constructor, 111
Subobject

constant, 189
definition, 187

Subprogram
module, 14

Subscript
list, 197
order value, 204
triplet, declared bounds, 201
vector, 201

Substrings, 190
Summation expression, 230
summation expression, 230
Syntax

low-level, 46, 65
nonstandard, 4

346 007–3692–004

Index

T

Tab character
in fixed source form, 62

Target
association, 208
of a pointer, 21, 142, 204

TARGET attribute and statement, 144
Token

lexical, 43, 46
Triplet subscript, 200
Type

declaration statements, 119
derived, 97
intrinsic, 48
specification statements, BNF summary, 32

type definition, 71
TYPE statement (for derived types), 102, 129
Typing

implicit, 132

U

Unary operators, 221
Unconditional branching, 324
Undefined variables, 20
Underscore

use in names, 45
Unit

scoping, 13
Use association, 12
User-defined

data type, defined operations, 69
operator, 52

user-defined type, 17, 71

V

Variables
association of, 10
choosing kind, 70
choosing type and attribute, 69
definition status, 21
DO, 311
initialization, 20
overview, 188
SAVE attribute and values, 163
scope, 12
scope of, 10
value definition, 19

VOLATILE attribute, 165
VOLATILE statement, 165

W

WHERE
construct

BNF summary, 38
overview, 289

statement, 289
WHILE statement, 312
Working storage, 171

Z

Zero-sized array, 200, 207

007–3692–004 347

